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Naïve Bayes



• We consider classification— 

• Predict an output  (called “class”) given the input .Y ∈ {1,…, K} X

Task

* image source: HuggingFace



• Suppose that there are two classes:                  (binary classification) 

• Any classifier can be viewed as: 

 

   for some decision region  

• These are separated by the 
decision boundary.

𝟢, 𝟣

f(x) = {𝟢 ⋯ x ∈ ℛ0

𝟣 ⋯ x ∈ ℛ1

ℛ0, ℛ1

Terminology



• One can use linear regression for classification 

• … but this is a bad choice. 

• Reason. Very sensitive to outliers. 

• Example. Tumor malignancy prediction.

Linear Regression for Classification?



• Setting. We have  

• Assumption. Entries of  are conditionally independent given . 

 

• Can be true for tabular data, but definitely wrong for images. 

• naïve assumption ;( 

• From now on, we let  WLOG.

{(x(i), y(i))}n
i=1 ∼ PXY, x(i) ∈ ℝd, y(i) ∈ {0,1}

x y

p(x |y) =
n

∏
i=1

p(xi |y)

d = 1

Naïve Bayes



• Based on some human knowledge, we manually design two things: 

• likelihood models:  

• priors:  

• Example. Gaussian Likelihood has two parameters  
                 for each . 

p(x |y)

p(y)

μ, σ ∈ ℝ
y

p(x |y) =
1

σy 2π
exp (−

(x − μy)2

2σ2
y )

Hypothesis



• Then, our predictor is the MAP estimator which maximizes the 
posterior probability (MAP = maximum a posteriori) 

 

               

                             

f(x) = arg max
y

p(y |x)

= arg max
y

p(y)p(x |y)

= arg max
y (p(y)

d

∏
i=1

p(xi |y))

Hypothesis



• The hypothesis space is constructed by selecting parameters for: 

• likelihood model   

• prior distribution  

• Example. Gaussian Likelihood       select  

                      Bernoulli prior                 select 

p(x |y)

p(y)

⇒ μ0, μ1, σ0, σ1 ∈ ℝ

⇒ p ∈ [0,1]

Hypothesis Space



• To fit the parameters, we maximize the joint probability: 

 

• Equivalent to solving ERM, with 

max
θ

pθ(x1, …, xn, y1, …, yn) = max
θℓ,θp

n

∏
i=1

pθℓ
(xi |yi)pθp

(yi)

= min
θℓ,θp

n

∑
i=1

(− log pθℓ
(xi |yi) − log pθp

(yi))

Fitting the parameters

So-called negative log-
likelihood (NLL) loss



• Again, equivalent to solving two optimizations separately: 

 min
θℓ

n

∑
i=1

(− log pθℓ
(xi |yi))

min
θp

n

∑
i=1

(− log pθp
(yi))

Fitting the parameters

such  is the maximum 
likelihood estimate (MLE)

θℓ



• ERM solutions are usually simple: 

• Example. Gaussian Likelihood 

• Use class-wise sample mean and classwise sample variance 
for  

• Example. Bernoulli Prior 

• Simply use the frequency           

μ0, μ1, σ2
0 , σ2

1

p =
#1s in dataset

n

Fitting the parameters



Perceptron & 
Logistic Regression



• The first “neural network”  
by Rosenblatt (1958).

Perceptron

Rosenblatt, “The Perceptron: A Perceiving and Recognizing Automaton,” 1957





• Mathematically, quite simple— 

• We use the sign of linear models as our hypothesis space. 

 

 

• Problem. Taking derivatives w.r.t.  is nasty. 
                  (indicator function; 1 if the bracketed event is true, 0 if false) 

{fθ( ⋅ ) fθ(x) = 1[θ1
⊤x + θ0 > 0]}

= {fθ( ⋅ ) fθ(x) = 1[θ⊤x̃ > 0]}
1[ ⋅ ]

Perceptron



• To optimize, we use the loss 

 

• That is, we have loss           when wrong.         (penalize confidence?) 
                                                         when correct. 

• Note. It is common to use loss functions different from the 
           performance criterion (e.g., cross entropy loss vs. accuracy) 

                These are called surrogate loss. 

• Note. If ?

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x

|θ⊤x |
0

θ = 0

Loss



• The original perceptron paper assumes that data comes one-by-one. 
(called online learning) 

• The gradient is     

• If wrong for a sample with . 

 

• If wrong for a sample with  

 

• If correct, no change.

∇θℓ(y, fθ(x)) = ( fθ(x) − y)x

y = 1

θ(i+1) = θ(i) + η ⋅ x

y = 0

θ(i+1) = θ(i) − η ⋅ x

Optimization



• Idea. Solve the classification by regression. 

• How? Approximate the quantity 

 

• Why not approximate ? 

• ,      but     

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)

p(y = 1 |x) ∈ [0,1] θ⊤x̃ ∈ (−∞, + ∞)

Logistic Regression



 

• This is equivalent to saying that 

      

•  is called logistic function.

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)

σ(t) = 1/1 + exp(−t)

Logistic Regression



• Given the data, we maximize the log likelihood— 

      

• Or, minimize the NLL loss— 

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )

Logistic Regression



 

• Again, this is equivalent to the ERM, with: 

• Hypothesis space is       

• Loss is the cross-entropy   

                                                          

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t])
= log(t)−y + log(1 − t)y−1

Logistic Regression



• The training risk can be written more tediously as: 

 

• Convex, but no general closed-form solution. 

• The gradient descent can be written as: 

 

Note: Similar to perceptron, GD update is proportional to 

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i

(y − fθ)x

Optimizing



Nearest Neighbors



• Can be traced back to a book in 1021— 
 .by Ibn al-Haytham (”The book of optics“) كتاب المناظر 

Visual Recognition = Nearest Neighbor 

“Recognition is the perception of similarity 
between two forms—i.e., of the form sight 
perceives at the moment of recognition 
and the form of that visible object, or its like, 
that it has perceived one or more times before.” 

* image source: HuggingFace

Nearest Neighbor



• A nonlinear, nonparametric algorithm. 

• Algorithm.  

• Dataset. We have a dataset  

• Training. N/A 

• Testing. When a new sample  comes in: 

• Find  samples  in  that has smallest . 

• Predict with the majority vote (classification) 
                         or averaging (regression).

D = {(xi, yi)}n
i=1

x

k x(1), …, x(k) D ∥x − x(i)∥

K-Nearest Neighbors



k-NN with k = 3



Small  = More flexibilityk



• K-nearest neighbor is difficult to be scaled to large size. 

• Good. Does not take training time. 

• Bad. For testing, we need to compute  comparisons. 

• i.e., inference time  # data 

n

∝

Computational Complexity



• Parametric. Uses a fixed number of parameters. 

• Linear Regression, Logistic Regression, Neural network, … 

• Nonparametric. Uses flexible number or infinitely many parameters. 

• K-NN, Boosting Trees, Random Forest.

Parametric vs. Nonparametric



Cheers

• Next up. SVM


