4. Supervised Learning \& Linear Regression EECE454 Introduction to Machine Learning Systems

Notice

- Get ready for attendance checks \& assignments!

Big Picture

- Linear Algebra. Vectors and Matrices formalize both Data and Model
- Matrix Calculus. Needed for optimization of models
- Probability. Formalizes uncertainty in data and optimization
- Today. Start formally studying ML!

Supervised Learning: The basic framework

Setup

- Goal. Build a nice predictor-
- Predict some output Y given a (jointly distributed) input X.

Setup

- Goal. Build a nice predictor-
- Predict some output Y given a (jointly distributed) input X.

Setup

- Goal. Build a nice predictor-
- Predict some output Y given a (jointly distributed) input X.

Inputs		Output	
$\nabla-1$	Audio	Up	0.200
	Alassification Model		0.800

Setup

- Goal. Build a nice predictor-
- Predict some output Y given a (jointly distributed) input X.

Inputs

Output

Detailed description
a herd of giraffes and zebras grazing in a field

Setup

- Goal. Build a nice predictor-
- Predict some output Y given a (jointly distributed) input X.

Inputs

Input
Darth Vader is surfing on the waves.

Output

Setup

- Find a predictor $f(\cdot)$ such that $f(X) \approx Y$
- Can rewrite as

$$
\text { minimize } \mathbb{E}[\ell(f(X), Y)], \quad \text {... over a good set of candidate } f(\cdot)
$$

for some nice "loss" function $\ell(\cdot, \cdot)$.

- Problem. Don't know the joint distribution $P_{X Y}$ (if we knew, we can easily choose Bayes-optimal f)

Setup

- Dataset. Instead, we can use the training dataset.
- The dataset consists of many input-output pairs.
(i.e., feature-label)

$$
D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

- We call this scenario supervisedsomeone already inspected the data x_{i} and annotated with y_{i} (i.e., supervision for machine)

Example "Labeled" dataset: ImageNet

n02097047 (196)

n01682714 (40)

n02859443 (449)

n02096177 (192)
[3) imagenet1000_clsidx_to_labels.txt
\{0: 'tench, Tinca tinca',
2 1: 'goldfish, Carassius auratus',
3 2: 'great white shark, white shark, man-eater, ma
4 3: 'tiger shark, Galeocerdo cuvieri',
5 4: 'hammerhead, hammerhead shark'
6 5: 'electric ray, crampfish, numbfish, torpedo', 7 6: 'stingray',
8 7: 'cock',
9 8: 'hen',
9
10
,
11 10: 'brambling, Fringilla montifringilla',
12 11: 'goldfinch, Carduelis carduelis',
13 12: 'house finch, linnet, Carpodacus mexicanus', 14 13: 'junco, snowbird',
15 14: 'indigo bunting, indigo finch, indigo bird, P 16 15: 'robin, American robin, Turdus migratorius',
17 16: 'bulbul',
18 17: 'jay'
19 18: 'magpie',
20 19: 'chickadee',

Learning Algorithm

- Summing up, supervised learning is simply doing

$$
D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \rightarrow \text { Algo } \rightarrow \hat{f}(\cdot)
$$

with some algorithm.

- Q. What algorithm?

Learning Algorithm

- Typically consist of two elements:
- A bag of functions (hypothesis space)

$$
\mathscr{F}=\left\{f_{1}, f_{2}, \ldots\right\}
$$

- An optimizer-the training method
- (approximately) solves Empirical Risk Minimization (ERM)

$$
\min _{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) \quad+\text { regularizer }
$$

Learning Algorithm

- Intuition. Empirical Risk \approx True Risk (Population Risk)

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \longrightarrow \mathbb{E}[g(X)] \\
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) \longrightarrow \mathbb{E}[\ell(Y, f(X))]
\end{gathered}
$$

(Note 1. How fast? consult concentration inequalities)
(Note 2. Not 100\% required—not all X_{i} are born equal!)

Testing

- We hope that $\mathbb{E}[\ell(Y, \hat{f}(X))]$ is small, but how do we know?
- Usually have a test dataset $D^{\text {test }}=\left\{\left(\tilde{x}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{x}_{k}, \tilde{y}_{k}\right)\right\}$.
- We validate the smallness of

$$
\frac{1}{k} \sum_{i=1}^{k} \ell\left(\hat{f}\left(\tilde{x}_{i}\right), \tilde{y}_{i}\right)
$$

- Typically splits train/val*/test into 8:1:1 (or 7:1:2 in the past). (cross-validation if the dataset is small)

Learning algorithm vs Learning algorithm

Which algorithm should we use?

- Some considerations:
- Model Size (= Richness of Hypothesis Space)
- If too small, even the best $\hat{f}(\cdot)$ cannot fit the reality.

Linearly separable
A linear decision boundary that separates the two classes exists

Not linearly separable
No linear decision boundary that separates

Which algorithm should we use?

- Some considerations:
- Model Size (= Richness of Hypothesis Space)
- If too large, can overfit the training data + large inference cost

Which algorithm should we use?

- Some considerations:
- Optimization (= difficulty of solving ERM)
- Often highly customized for each "model."
- For highly complicated, non-linear models...
- Explicit solution not available.
- Takes a long time to compute the optimum (high training cost)

Which algorithm should we use?

- Some considerations:
- Loss function / Regularizer
- Affects how difficult the optimization is.
- Affects overfitting.
- Affects desirable properties (robustness, sparsity)...

Throughout the course...

- We study popular ML models one-by-one.
- Which "hypothesis space" it uses.
- Which "optimizer" it uses.
- Which "loss/regularizer" it uses.
- This and Next Class. Linear models, Naïve Bayes, Nearest Neighbors

Note. Many of these choices are heavily dependent on task. (regression vs. classification, image vs. text vs. tabular, ...)

Linear Regression

Regression

- Regression \approx Predict continuous $y \in \mathbb{R}^{m}$.
- Example. House price prediction.

$$
f(\text { area })=\text { price }
$$

Living area $\left(\right.$ feet $\left.^{2}\right)$	Price $(1000 \$ s)$
2104	400
1600	330
2400	369
1416	232
3000	540
\vdots	\vdots

Linear Regression

- We use linear model $f(\cdot)$.
- If $x \in \mathbb{R}$ and $y \in \mathbb{R}$,

$$
f(\mathbf{x})=w \cdot x+b, \quad w \in \mathbb{R}, c \in \mathbb{R}
$$

- If $\mathbf{x} \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$,

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+b, \quad \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}
$$

- If $\mathbf{x} \in \mathbb{R}^{d}$ and $\mathbf{y} \in \mathbb{R}^{m}$,

$$
f(\mathbf{x})=\mathbf{W} \mathbf{x}+\mathbf{b}, \quad \mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m}
$$

Linear Regression

- We use - Ir $x \in \mathbb{R}$ ar
- Reflects a belief that the data-generating distribution may look like:

$$
\begin{gathered}
X \sim P(X) \\
Y \sim w_{*}^{\top} X+\epsilon
\end{gathered}
$$

where ϵ is some (zero-mean) noise.

- Fun fact. If X, Y are jointly Gaussian, MMSE estimator is always linear!

Linear Regression: Ordinary Least Squares

- We use squared ℓ_{2} loss $\ell(\mathbf{y}, \hat{\mathbf{y}})=\|\mathbf{y}-\hat{\mathbf{y}}\|_{2}^{2}$.
- For a dataset $D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, we solve

$$
\min _{w, b} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\left(w \cdot x_{i}+b\right)\right)^{2}
$$

- Why least squared?
- easy to solve (quadratic)
- nice interpretation (maximum likelihood solution under linear model + Gaussian noise)

Solving the

 Linear Regression
1D, bias-free case

$$
\min _{w \in \mathbb{R}} \underbrace{\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\left(w \cdot x_{i}\right)\right)^{2}}_{=: J(w)}
$$

- Since this is a quadratic function, the minimum is where derivatives are zero (critical point)

$$
\frac{\partial J}{\partial w}(w)=0
$$

1D, bias-free case

$$
\begin{gathered}
\frac{\partial J}{\partial w}=\frac{1}{n} \sum_{i=1}^{n}\left(w \cdot x_{i}-y_{i}\right) x_{i}=0 \\
\Rightarrow w\left(\sum x_{i}^{2}\right)=\sum y_{i} x_{i} \\
\Rightarrow w=\frac{\sum y_{i} x_{i}}{\sum x_{i}^{2}}
\end{gathered}
$$

- Explicit solution can be characterized by math (not always possible)
- No real gradient computation needed (we did math with our brain)
- Need several multiplications and summations for optimization.

Solving the minimization: Multivariate

- Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^{d}$.

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}^{1}} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)^{2}
$$

- This looks messy, so we want to simplify a bit...

Solving the minimization: Multivariate

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}^{1}} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)^{2}
$$

- Trick \#1.
. Define $\tilde{\mathbf{x}}=\left[\begin{array}{l}\mathbf{x} \\ 1\end{array}\right], \theta=\left[\begin{array}{l}\mathbf{w} \\ b\end{array}\right]$.

$$
J(\theta)=\frac{1}{2 n} \sum_{i=1}^{n}\left(y-\theta^{\top} \tilde{\mathbf{x}}\right)^{2}
$$

Solving the minimization: Multivariate

$$
\min _{\theta \in \mathbb{R}^{d+1}} \frac{1}{2 n} \sum_{i=1}^{n}\left(y-\theta^{\top} \tilde{\mathbf{x}}\right)^{2}
$$

- Trick \#2.

Define $\mathbf{X}=\left[\begin{array}{c}\tilde{\mathbf{x}}_{1}^{\top} \\ \cdots \\ \tilde{\mathbf{x}}_{n}^{\top}\end{array}\right], \mathbf{y}=\left[\begin{array}{c}y_{1} \\ \cdots \\ y_{n}\end{array}\right]$.

$$
J(\theta)=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \theta\|^{2}
$$

Solving the minimization: Multivariate

$$
J(\theta)=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \theta\|^{2}
$$

- We examine the critical point-where gradient is zero.

$$
\begin{aligned}
\nabla J(\theta) & =\frac{1}{2 n} \nabla\left((\mathbf{y}-\mathbf{X} \theta)^{\top}(\mathbf{y}-\mathbf{X} \theta)\right) \\
& =\frac{1}{2 n} \nabla\left(\mathbf{y}^{\top} \mathbf{y}+\theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta-2 \mathbf{y}^{\top} \mathbf{X} \theta\right) \\
& =\frac{1}{2 n}\left(2 \theta^{\top} \mathbf{X}^{\top} \mathbf{X}-2 \mathbf{y}^{\top} \mathbf{X}\right)=0
\end{aligned}
$$

Solving the minimization: Multivariate

- Thus, critical point is the θ that satisfies:

$$
\mathbf{X}^{\top} \mathbf{X} \theta=\mathbf{X}^{\top} \mathbf{y}
$$

- If the matrix $\mathbf{X}^{\top} \mathbf{X}$ is invertible, we have a unique solution:

$$
\hat{\theta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- Fun exercise. Count the number of FLOPs?

Solving the minimization: Multivariate

- Thus, critical point is the θ that satisfies:

$$
\mathbf{X}^{\top} \mathbf{X} \theta=\mathbf{X}^{\top} \mathbf{y}
$$

- If not, there are infinite critical points (sadly (:0)
- Solution. The above takes the form $\mathbf{A} \theta=\mathbf{b}$
\Rightarrow simply use QR decomposition
- Gives you Moore-Penrose pseudoinverse ($\left.\mathbf{X}^{\top} \mathbf{X}\right)^{\dagger}$, which is a minimum norm solution among all possible θ.

Solving differentlyGradient Descent

Gradient Descent

- Repeat taking steps in the downward direction.

Gradient Descent

- Pick a random $\theta^{(0)}$, and use gradient to update $\theta^{(1)}, \theta^{(2)}, \ldots$

Gradient Descent

- Pick a random $\theta^{(0)}$, and use gradient to update $\theta^{(1)}, \theta^{(2)}, \ldots$
- Idea. Gradient = direction of fastest increase.
\Rightarrow Negative Gradient = direction of fastest decrease.

$$
\theta^{(t+1)}=\theta^{(t)}-\eta \cdot \nabla_{\theta} J\left(\theta^{(t)}\right)
$$

- Plug in the previous gradient formula:

$$
\theta \leftarrow \theta-\frac{\eta}{n}\left(\mathbf{X}^{\top} \mathbf{X} \theta-\mathbf{X}^{\top} \mathbf{y}\right)
$$

Computational Remarks

$$
\theta \leftarrow \theta-\frac{\eta}{n}\left(\mathbf{X}^{\top} \mathbf{X} \theta-\mathbf{X}^{\top} \mathbf{y}\right)
$$

- How computation-heavy?
. You can pre-compute and re-use $\mathbf{A}:=\frac{\eta}{n} \mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{b}:=\frac{\eta}{n} \mathbf{X}^{\top} \mathbf{y}$ for every GD iteration.

$$
\theta \leftarrow(\mathbf{I}-\mathbf{A}) \theta-\mathbf{b}
$$

- The pre-computing cost is almost same as solving explicitly (except QR decomposition part).

Additional Remarks

- You don't need full data for GDusing a randomly drawn subset of k samples works $(k \ll n)$. Called "mini-batch GD." (or "stochastic GD" when $k=1$).
- Useful for small RAM!

Cheers

- Next up. Naïve Bayes, Logistic Regression, Nearest Neighbors

