4. Supervised Learning & Linear Regression EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Get ready for attendance checks & assignments!

Notice

- Linear Algebra. Vectors and Matrices formalize both Data and Model
 - Matrix Calculus. Needed for optimization of models
- **Probability.** Formalizes uncertainty in data and optimization
- Today. Start formally studying ML!

Supervised Learning: The basic framework

- Goal. Build a nice predictor—
 - Predict some output Y given a (jointly distributed) input X.

Setup

- Goal. Build a nice predictor—
 - Predict some *output* Y given a (jointly distributed) *input* X.

Image Classification Model

Setup

Output	
Egyptian cat	0.514
Tabby cat	0.193
Tiger cat	0.068

- Goal. Build a nice predictor—
 - Predict some output Y given a (jointly distributed) input X.

Setup

Audio Classification Model

Output	
Up	0.200
Down	0.800

- Goal. Build a nice predictor—
 - Predict some output Y given a (jointly distributed) input X.

Setup

Image-to-Text Model

Output

Detailed description

a herd of giraffes and zebras grazing in a field

- Goal. Build a nice predictor—
 - Predict some output Y given a (jointly distributed) input X.

Inputs

Input

Darth Vader is surfing on the waves.

Setup

Text-to-Video Model

Output

• Find a predictor $f(\cdot)$ such that $f(X) \approx Y$ • Can rewrite as minimize $\mathbb{E}[\ell(f(X), Y)],$ for some nice "loss" function $\ell(\cdot, \cdot)$.

• **Problem.** Don't know the joint distribution P_{XY}

Setup

(if we knew, we can easily choose Bayes-optimal f)

Setup

- Dataset. Instead, we can use the training dataset.
 - The dataset consists of many *input-output* pairs.

$$D = \left\{ (x_1, y_1), \dots, (x_n, y_n) \right\}$$

We call this scenario supervised—
 someone already inspected the data x_i and annotated with y_i
 (i.e., supervision for machine)

(i.e., feature-label)

Example "Labeled" dataset: ImageNet

n02097047 (196)

n01682714 (40)

n04254777 (806)

n03134739 (522)

n02096177 (192)

<⇒ ima	enet1000_clsidx_to_labels.txt
1	{0: 'tench, Tinca tinca',
2	1: 'goldfish, Carassius auratus',
3	2: 'great white shark, white shark, man-ea
4	3: 'tiger shark, Galeocerdo cuvieri',
5	4: 'hammerhead, hammerhead shark',
6	5: 'electric ray, crampfish, numbfish, tor
7	6: 'stingray',
8	7: 'cock',
9	8: 'hen',
10	9: 'ostrich, Struthio camelus',
11	10: 'brambling, Fringilla montifringilla',
12	<pre>11: 'goldfinch, Carduelis carduelis',</pre>
13	12: 'house finch, linnet, Carpodacus mexic
14	13: 'junco, snowbird',
15	14: 'indigo bunting, indigo finch, indigo
16	15: 'robin, American robin, Turdus migrato
17	16: 'bulbul',
18	17: 'jay',
19	18: 'magpie',
20	19: 'chickadee',

Learning Algorithm

Summing up, supervised learning is simply doing

$$D = \left\{ (x_1, y_1), \dots, (x_n, y_n) \right\}$$

with some algorithm.

• Q. What algorithm?

Learning Algorithm

- Typically consist of two elements:
 - A bag of functions (hypothesis space)

- An optimizer—the training method

$$\min_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \mathscr{C}(y_i, f(x_i)) + \text{regularizer}$$

$$\mathcal{F} = \left\{ f_1, f_2, \dots \right\}$$

(approximately) solves Empirical Risk Minimization (ERM)

Learning Algorithm

Intuition. Empirical Risk \approx True Risk (Population Risk) lacksquare

(Note 2. Not 100% required—not all X_i are born equal!)

$$f_i \longrightarrow \mathbb{E}[g(X)]$$

$$\mathbb{E}(x_i) \longrightarrow \mathbb{E}[\ell(Y, f(X))]$$

(**Note 1.** How fast? consult concentration inequalities)

• We hope that $\mathbb{E}[\ell(Y, \hat{f}(X))]$ is small, but how do we know?

- Usually have a **test dataset** $D^{\text{test}} = \{(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_k, \tilde{y}_k)\}.$
 - We validate the smallness of
 - Typically splits train/val*/test into 8:1:1 (or 7:1:2 in the past). (cross-validation if the dataset is small)

Testing

 $\frac{1}{k} \sum_{i=1}^{k} \ell(\hat{f}(\tilde{x}_i), \tilde{y}_i)$

Learning algorithm vs Learning algorithm

- Some considerations:
 - Model Size (= Richness of Hypothesis Space)
 - If too small, even the best $\hat{f}(\cdot)$ cannot fit the reality.

Linearly separable

Not linearly separable

- Some considerations:
 - Model Size (= Richness of Hypothesis Space)

• If too large, can overfit the training data + large inference cost

- Some considerations:
 - Optimization (= difficulty of solving ERM)
 - Often highly customized for each "model."
 - For highly complicated, non-linear models...
 - Explicit solution not available.
 - Takes a long time to compute the optimum (high training cost)

- Some considerations:
 - Loss function / Regularizer
 - Affects how difficult the optimization is.
 - Affects overfitting.

• Affects desirable properties (robustness, sparsity)...

Throughout the course...

- We study popular ML models one-by-one.
 - Which "hypothesis space" it uses.
 - Which "optimizer" it uses.
 - Which "loss/regularizer" it uses.
- This and Next Class. Linear models, Naïve Bayes, Nearest Neighbors

<u>Note.</u> Many of these choices are heavily dependent on *task*. (regression vs. classification, image vs. text vs. tabular, ...)

Regression

- **Regression** \approx Predict continuous $y \in \mathbb{R}^m$.
- **Example.** House price prediction. f(area) = price

Living area (feet ^{2})	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Linear Regression

- We use linear model $f(\cdot)$.
- If $x \in \mathbb{R}$ and $y \in \mathbb{R}$, $f(\mathbf{x}) = w \cdot x + b, \qquad w \in \mathbb{R}, c \in \mathbb{R}$ • If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$, $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b, \qquad \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ • If $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^m$, $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}, \qquad \mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$

Linear Regression

- We use line • If $x \in \mathbb{R}$ ar $f(\mathbf{X}) =$ • If $\mathbf{x} \in \mathbb{R}^d$ a $f(\mathbf{x}) =$ • If $\mathbf{x} \in \mathbb{R}^d$ a $f(\mathbf{X}) = \mathbf{I}$
- Reflects a belief that the data-generating distribution may look like:

• Fun fact. If X, Y are jointly Gaussian, MMSE estimator is always linear!

- $X \sim P(X)$
- $Y \sim w_*^{\mathsf{T}} X + \epsilon$
- where ϵ is some (zero-mean) noise.

Linear Regression: Ordinary Least Squares

- We use squared $\ell_2 \log \ell(\mathbf{y}, \hat{\mathbf{y}})$
- For a dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we solve $\min_{w,b} \frac{1}{2n} \sum_{i=1}^{n} \left(\frac{1}{2n} \sum_{i=1}^{n} \frac{1}{2n} \right)$

Why least squared?

- easy to solve (quadratic) •
- nice interpretation (maximum likelihood solution lacksquareunder linear model + Gaussian noise)

$$) = \|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2}.$$

$$y_i - (w \cdot x_i + b) \Big)^2$$

Solving the Linear Regression

 Since this is a quadratic function, the minimum is where derivatives are zero (critical point)

 ∂J

 ∂w

$$\left(y_i - (w \cdot x_i)\right)^2$$

$$=:J(w)$$

$$-(w) = 0$$

 $\Rightarrow w = \frac{\sum y_i x_i}{\sum x^2}$

 Explicit solution can be characterized by math (not always possible) No real gradient computation needed (we did math with our brain)

Need several multiplications and summations for optimization.

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d$.

• This looks messy, so we want to simplify a bit...

 $\min_{\mathbf{w}\in\mathbb{R}^{d},b\in\mathbb{R}^{1}}\frac{1}{2n}\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i}+b\right)^{2}$

• Trick #1. • Define $\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$.

 $J(\theta) = \frac{1}{2n} \sum_{n=1}^{n} (y - \theta^{\mathsf{T}} \tilde{\mathbf{x}})^2.$ l=1

• Trick #2.

• Define $\mathbf{X} = \begin{bmatrix} \tilde{\mathbf{x}}_1^\top \\ \cdots \\ \tilde{\mathbf{x}}_n^\top \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$.

 $\min_{\theta \in \mathbb{R}^{d+1}} \frac{1}{2n} \sum_{i=1}^{n} (y - \theta^{\mathsf{T}} \tilde{\mathbf{x}})^2$

 $J(\theta) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\theta||^2.$ 2n

2n

 $J(\theta) = -\frac{1}{2}$ • We examine the critical point—where gradient is zero. $\nabla J(\theta) = \frac{1}{2n} \nabla \left(\left(\frac{1}{2n} \right)^2 \right)^2 \right)$ $=\frac{1}{2n}\nabla\left(\mathbf{r}\right)$ $= \frac{1}{2\ell}$

$$\frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$$

$$\begin{split} & \left(\mathbf{y} - \mathbf{X}\theta \right)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\theta) \right) \\ & \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} + \theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\theta - 2\mathbf{y}^{\mathsf{T}} \mathbf{X}\theta \right) \\ & \theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} - 2\mathbf{y}^{\mathsf{T}} \mathbf{X} \right) = \mathbf{0} \end{split}$$

- Thus, critical point is the heta that satisfies:

• If the matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, we have a unique solution: $\hat{\theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

• *Fun exercise*. Count the number of FLOPs?

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

- Thus, critical point is the θ that satisfies: $\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta = \mathbf{X}^{\mathsf{T}}\mathbf{y}$
 - If not, there are infinite critical points (sadly (2))
 - Solution. The above takes the form $\mathbf{A}\theta = \mathbf{b}$ \Rightarrow simply use QR decomposition
 - Gives you Moore-Penrose pseudoinverse $(\mathbf{X}^{\top}\mathbf{X})^{\dagger}$, which is a minimum norm solution among all possible θ .

Solving differently— Gradient Descent

Gradient Descent

• Repeat taking steps in the downward direction.

Gradient Descent

- Pick a random $\theta^{(0)}$, and use gradient to update $\theta^{(1)}, \theta^{(2)}, \dots$

Gradient Descent

- Pick a random $\theta^{(0)}$, and use gradient to update $\theta^{(1)}, \theta^{(2)}, \dots$

- Idea. Gradient = direction of fastest increase.
 ⇒ Negative Gradient = direction of fastest decrease.
 - $\theta^{(t+1)} = \theta^{(t)}$
 - Plug in the previous gradient formula:

$$\theta \leftarrow \theta - \frac{\eta}{n} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$$

$$(t) - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

Computational Remarks

- How computation-heavy?
 - for every GD iteration.

 - (except QR decomposition part).

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\eta}{n} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$

• You can pre-compute and re-use $\mathbf{A} := -\mathbf{X}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ and $\mathbf{b} := -\mathbf{X}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$

$\theta \leftarrow (\mathbf{I} - \mathbf{A})\theta - \mathbf{b}$

The pre-computing cost is almost same as solving explicitly

Additional Remarks

- You don't need full data for GD using a randomly drawn subset of k samples works ($k \ll n$). Called "mini-batch GD." (or "stochastic GD" when k = 1).
 - Useful for small RAM!

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

• Next up. Naïve Bayes, Logistic Regression, Nearest Neighbors

