# 3. Recap: Matrix Calculus \& Basic Probability EECE454 Introduction to Machine Learning Systems 

## New Ref. — Deep Learning

- Very cool book by Francois Fleuret: "The Little Book of Deep Learning" https://fleuret.org/francois/lbdl.html
- Strongly recommended-Phone-sized PDFs!


Figure 3.6: Test loss of a language model vs. the amount of computation in petaflop/s-day, the dataset size in tokens, that is fragments of words, and the model size in parameters [Kaplan et al., 2020].

## Last Class

- Vectors, Matrices
- Multiplications (V-V, M-V, M-M)
- Vector norms
\# not covered matrix norms yet
- Column/Row/Null Space
- Eigenvalues, Eigenvectors
- Eigendecomposition, SVD
- Today. Gram-Schmidt, Matrix Calculus, Probability.

Gram-Schmidt (QR decomposition)

## QR Decomposition

- Compact decomposition of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ (with $m \geq n$ )

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}
$$

- $\mathbf{Q} \in \mathbb{R}^{m \times m}: \quad$ unitary matrix (i.e., $Q^{\top}=Q^{-1}$ ).
- $\mathbf{R} \in \mathbb{R}^{m \times n}$ : upper triangular matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{e}_{1} & \cdots & \mathbf{e}_{m} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
& & \cdots & \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

## Idea

## $\mathbf{A}=\mathbf{Q R}$

- This is identical to saying that

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{e}_{1} & \cdots & \mathbf{e}_{m} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{c}
r_{11} \\
0 \\
0 \\
\cdots
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{e}_{1} & \cdots & \mathbf{e}_{m} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{c}
r_{12} \\
r_{22} \\
0 \\
\cdots
\end{array}\right], \quad \cdots \\
& \Rightarrow \mathbf{a}_{1}=\mathbf{e}_{1} r_{11} \\
& \mathbf{a}_{2}=\mathbf{e}_{1} r_{12}+\mathbf{e}_{2} r_{22}
\end{aligned}
$$

## Procedure

$$
\mathbf{a}_{1}=\mathbf{e}_{1} r_{11}, \quad \mathbf{a}_{2}=\mathbf{e}_{1} r_{12}+\mathbf{e}_{2} r_{22}, \quad \cdots
$$

- This can be done via Gram-Schmidt process
- Make $\mathbf{e}_{1}$ by normlizing $\mathbf{a}_{1}$.
- Make $\mathbf{e}_{2}$ by normalizing the remainder $\mathbf{a}_{2}-\left\langle\mathbf{a}_{2}, \mathbf{e}_{1}\right\rangle \cdot \mathbf{e}_{1}$
- repeat ...



## Matrix decompositions...

- There are many!
- SVD, QR, Cholesky, LU, ...
- These tend to have different purposes:
- People use QR for solving $\mathbf{A x}=\mathbf{y}$.
- Different strengths / weaknesses (e.g., numerical stability)
- See section 2 of "Numerical Recipes" for more info.

Matrix Calculus

## Why Matrix Calculus?

- Univariate Calculus, to find an optimal parameter.
- Goal. Find a good "model" $c \in \mathbb{R}$ for a single datum. That is, we want to minimize

$$
\left(y_{0}-c x_{0}\right)^{2}
$$

- How to solve?
(either explicit solution or iterative method)



## Why Matrix Calculus?

- Vector/Matrix Calculus, to find optimal parameters.
- Goal. Find a good "model" $\mathbf{W} \in \mathbb{R}^{m \times n}$ for high-dim data, with $\mathbf{x}_{0} \in \mathbb{R}^{n}, \mathbf{y}_{0} \in \mathbb{R}^{m}$. That is, we minimize

$$
\left\|\mathbf{y}_{0}-\mathbf{W} \mathbf{x}_{0}\right\|_{2}^{2}
$$

- How to solve?
(Later, we see even more complicated cases, where we use "gradient descent")


## Gradients

- For a scalar variable $x$, differentiating a...
scalar function $y \in \mathbb{R}: \quad \frac{\partial y}{\partial x}$ vector function $\mathbf{y} \in \mathbb{R}^{m}$ :

$$
\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x} & \cdots & \frac{\partial y_{m}}{\partial x}
\end{array}\right]^{\top}
$$

$$
\left[\begin{array}{ccc}
\frac{\partial y_{11}}{\partial x} & \cdots & \frac{\partial y_{1 n}}{\partial x} \\
\frac{\partial y_{m 1}}{\partial x} & \cdots & \frac{\partial y_{m n}}{\partial x}
\end{array}\right]
$$

## Gradients

- For a vector $\mathbf{x} \in \mathbb{R}^{n}$, differentiating a... scalar function $y \in \mathbb{R}$ :

$$
\left[\begin{array}{lll}
\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right] \quad \text { (note: direction) }
$$

vector function $\mathbf{y} \in \mathbb{R}^{m}: \quad\left[\begin{array}{lll}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right]$

Figure 5.2
Dimensionality of (partial) derivatives.


## Gradients

- For a matrix $\mathbf{x} \in \mathbb{R}^{m \times n}$, differentiating...



## References for self-study

- MML book Section 5
- https://en.wikipedia.org/wiki/Matrix_calculus

| Condition | Expression | Numerator layout, i.e. by $y$ and $x^{T}$ | Denominator layout, i.e. by $\mathbf{y}^{T}$ and $\mathbf{x}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{a}$ is not a function of $\mathbf{x}$ | $\frac{\partial \mathbf{a}}{\partial \mathbf{x}}=$ | 0 |  |
|  | $\frac{\partial \mathrm{x}}{\partial \mathrm{x}}=$ | I |  |
| A is not a function of $\mathbf{x}$ | $\frac{\partial \mathbf{A x}}{\partial \mathbf{x}}=$ | A | $\mathbf{A}^{\top}$ |
| A is not a function of $\mathbf{x}$ | $\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}}=$ | $\mathbf{A}^{\top}$ | A |
| $a$ is not a function of $\mathbf{x}$, $\mathbf{u}=\mathbf{u}(\mathbf{x})$ | $\frac{\partial a \mathbf{u}}{\partial \mathbf{x}}=$ | $a \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ |  |
| $v=v(\mathbf{x})$ <br> $\mathbf{a}$ is not a function of $\mathbf{x}$ | $\frac{\partial v \mathbf{a}}{\partial \mathbf{x}}=$ | $\mathbf{a} \frac{\partial v}{\partial \mathbf{x}}$ | $\frac{\partial v}{\partial \mathbf{x}} \mathbf{a}^{\top}$ |
| $v=\nu(\mathbf{x}), \mathbf{u}=\mathbf{u}(\mathbf{x})$ | $\frac{\partial v \mathbf{u}}{\partial \mathbf{x}}=$ | $v \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u} \frac{\partial v}{\partial \mathbf{x}}$ | $v \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial v}{\partial \mathbf{x}} \mathbf{u}^{\top}$ |
| $\mathbf{A}$ is not a function of $\mathbf{x}$, $\mathbf{u}=\mathbf{u}(\mathbf{x})$ | $\frac{\partial \mathbf{A} \mathbf{u}}{\partial \mathbf{x}}=$ | A $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^{\top}$ |
| $\mathbf{u}=\mathbf{u}(\mathbf{x}), \mathbf{v}=\mathbf{v}(\mathbf{x})$ | $\frac{\partial(\mathbf{u}+\mathbf{v})}{\partial \mathbf{x}}=$ | $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ |  |
| $\mathbf{u}=\mathbf{u}(\mathbf{x})$ | $\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}}=$ | $\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$ |
| $\mathbf{u}=\mathbf{u}(\mathbf{x})$ | $\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}}=$ | $\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$ |

Probability

## Probability

- Mathematical foundation due to Kolmogorov (1930s)
- The probability space $(\Omega, \mathscr{F}, P)$ is a triplet of:
- Sample space $\Omega$ Set of all possible outcomes.
- Event space $\mathscr{F}$

Set of all events.

- Probability measure $P: \mathscr{F} \rightarrow[0,1]$

Chances assigned for each event.

## Probability Space: Tossing a Die

- Consider tossing a die:
- Sample space

$$
\Omega=\{1,2,3,4,5,6\}
$$

- Event space

$$
\mathscr{F}=\{\varnothing,\{1\}, \cdots,\{6\},\{1,2\}, \cdots,\{5,6\}, \cdots,\{1,2,3,4,5,6\}\}
$$

- Probability measure (or probability distribution)

$$
P(\varnothing)=0, \quad P(\{1\})=1 / 6, \quad \cdots, \quad P(\{1,2,3,4,5,6\})=1
$$

(should satisfy certain properties!)

## Probability Measure

- Roughly put, axiomatically defined by these properties:
- $P(\Omega)=1$
- $P(A) \geq 0$
- $P(A \cup B)=P(A)+P(B), \quad$ whenever $A \cap B=\varnothing$
- called "additivity," and we expect this to hold for any countable number of mutually exclusive events.


## Random Variable

## Random Variable

- For good reason, we avoid dealing directly with the probability space.
- A real-valued function $\quad X: \Omega \rightarrow \mathbb{R}$.
- Example. For coin tossing where $\Omega=\{H, T\}$, we may define a random variable

$$
X(H)=0, \quad X(T)=1 .
$$

- Here, we can say that "the probability of $X=0$ under $P^{\prime \prime}$ is equal to $P(\{H\})$.
- We may use the shorthand $P(X=0)$


## Cumulative Distribution Function (CDF)

- CDF is defined as

$$
F_{X}(x):=P(X \leq x)
$$

- Properties.
- $0 \leq F_{X}(x) \leq 1$.
- $F_{X}(-\infty)=0$
- $F_{X}(\infty)=1$
- If $x \leq y$, then $F_{X}(x) \leq F_{X}(y)$



## Probability Mass Function (PMF)

- Defined for discrete random variables

$$
p_{X}(x):=P(X=x)
$$

- Properties.
- $0 \leq p_{X}(x) \leq 1$
- $\sum_{x} p_{X}(x)=1$
- $\sum_{x \in A} p_{X}(x)=P(X \in A)$



## Probability Density Function (PDF)

- Defined for continuous random variables

$$
f_{X}(s):=\frac{\partial F_{X}(x)}{\partial x}(s)
$$

- Properties.
- $0 \leq f_{X}(x)$
- $\int_{\mathbb{R}} f_{X}(x) \mathrm{d} x=1$
- $\int_{A} f_{X}(x) \mathrm{d} x=P(X \in A)$



## Probability Density Function (PDF)

- PDF is not really the "probability" itself, but gives you an estimate via:

$$
P(x \leq X \leq x+\mathrm{d} x) \approx p(x) \mathrm{d} x
$$

## Joint distribution

- Defined by some joint CDF

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)
$$

- Marginal CDF can be recovered via

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{X Y}(x, y), \quad F_{Y}(y)=\lim _{x \rightarrow \infty} F_{X Y}(x, y)
$$

- When discrete, we write joint PMF as

$$
p_{X Y}(x, y)=P(X=x, Y=y)
$$

where we have $p_{X}(x)=\sum_{y} p_{X Y}(x, y)$

## Conditional distribution

- Conditional probability of an event
both A and B happening; $P(A \cup B)$, precisely.

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- Conditional PMF (Discrete)

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

- Conditional PDF (Continuous)

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f(x)}
$$

## Basic arithmetics

- Product rule

$$
p(x, y)=p(y \mid x) p(x)
$$

- Bayes' theorem

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

## Statistics of RV

## Expectation (1st order)

Discrete.

$$
\begin{aligned}
& \mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x) \\
& \mathbb{E}[g(X)]=\int_{\mathbb{R}} g(x) f_{X}(x) \mathrm{d} x
\end{aligned}
$$

- Properties.
- $\mathbb{E}[a]=a, \quad$ for constant $a$.
- $\mathbb{E}[a f(X)+b g(X)]=a \mathbb{E}[f(X)]+b \mathbb{E}[g(X)]$


## Variance (2nd order)

$$
\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

- Properties.
- $\operatorname{Var}[a]=0, \quad$ for constant $a$.
- $\operatorname{Var}[a f(X)]=a^{2} \operatorname{Var}[f(X)]$
- Standard deviation.
- $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$



## Covariance \& Correlation

- Measures the joint variability of two RVs.

$$
\operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- (Pearson) Correlation.

$$
\operatorname{corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}}
$$

(thus lies in $[-1,+1]$ )


## Independence

## Independence

- $X$ and $Y$ are independent, whenever

$$
p(x, y)=p(x) p(y)
$$

- If this holds,
- $p(y \mid x)=p(y)$
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$
- $\operatorname{Cov}[X, Y]=0$


## Conditional Independence

- $X$ and $Y$ are conditionally independent given $Z$, whenever

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

(write $X \perp Y \mid Z$ )

- Theorem. We have $X \perp Y \mid Z$ if and only if there exists two functions $g(\cdot, \cdot), h(\cdot, \cdot)$ such that

$$
p(x, y \mid z)=g(x, z) h(y, z)
$$

## Common probability distributions

## Bernoulli (a.k.a. coin toss)

- $X \sim \operatorname{Bern}(p)$ is a binary random variable with

$$
P(X=1)=p, \quad P(X=0)=1-p
$$

- $\mathbb{E}[X]=p$
- $\operatorname{Var}[X]=p(1-p)$


## Binomial (a.k.a. many coins)

- $X \sim \operatorname{Bin}(n, p)$ is a discrete random variable with

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- $\mathbb{E}[X]=n p$
- $\operatorname{Var}[X]=n p(1-p)$
(here, $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ )



## Uniform

- Discrete. $X \sim \operatorname{Unif}(\{1, \ldots, k\})$ is a random variable with

$$
P(X=1)=\cdots=P(X=k)=\frac{1}{k}
$$

- Continuous. $X \sim \operatorname{Unif}([a, b])$ is a random variable with

$$
f_{X}(x)=\frac{1}{b-a} \mathbf{1}\{x \in[a, b]\}
$$

- $\mathbb{E}[X]=\frac{a+b}{2}, \quad \operatorname{Var}[X]=\frac{(b-a)^{2}}{12}$



## Gaussian (a.k.a. normal)

- $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$ is a random variable with

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left.(x-\mu)^{2}\right)}{2 \sigma^{2}}\right)
$$

- Importance. Central limit theorem
- $\mathbb{E}[X]=\mu$
- $\operatorname{Var}[X]=\sigma^{2}$



## Beta

- $X \sim \operatorname{Beta}(\alpha, \beta)$ is a continuous random variable with

$$
f_{X}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad x \in[0,1]
$$

- Here, $\Gamma(\cdot)$ is the Gamma function
(complicated, but $\Gamma(\alpha)=(\alpha-1)$ ! for integer $\alpha$ )
. $\mathbb{E}[X]=\frac{\alpha}{\alpha+\beta}$
. $\operatorname{Var}[X]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$



## Gamma

- $X \sim \operatorname{Gamma}(\alpha, \beta)$ is a continuous random variable with

$$
f_{X}(x)=\frac{1}{\Gamma(a)} \beta^{\alpha} x^{\alpha-1} \exp (-\beta x)
$$

- $\mathbb{E}[X]=\frac{\alpha}{\beta}$



## Concentration Inequalities

## Concentration inequalities

- Gives more fine-grained info. on the "tail behavior" of RVs.
- Typically takes the form:

$$
P(X-\mathbb{E}[X]>t) \leq \quad \text { small value }
$$

- Example. $X \sim \mathscr{N}(0,1)$ and $Y \sim \operatorname{Unif}([-\sqrt{3}, \sqrt{3}])$ has very different tails, while they have same mean and variances.


## Standard Inequalities

- Markov. For a nonnegative RV $X$, we have

$$
P(X \geq a) \leq \frac{\mathbb{E}[X]}{a}, \quad \forall a>0
$$

- Chebyshev. For a RV X, we have

$$
P(|X-\mathbf{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}, \quad \forall a>0
$$

## Standard Inequalities

- Chernoff.

$$
P(X \geq a) \leq \mathbb{E}[\exp (t \cdot X)] \cdot \exp (-t \cdot a) \quad \forall a \in \mathbb{R}, t>0
$$

- Revisit moment-generating functions, cumulant-generating functions, ...


## Bounded RVs

Theorem 2.2.5 (Hoeffding's inequality, two-sided). Let $X_{1}, \ldots, X_{N}$ be independent symmetric Bernoulli random variables, and $a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$. Then, for any $t>0$, we have

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{N} a_{i} X_{i}\right| \geq t\right\} \leq 2 \exp \left(-\frac{t^{2}}{2\|a\|_{2}^{2}}\right)
$$

Theorem 2.2.6 (Hoeffding's inequality for general bounded random variables). Let $X_{1}, \ldots, X_{N}$ be independent random variables. Assume that $X_{i} \in\left[m_{i}, M_{i}\right]$ for every $i$. Then, for any $t>0$, we have

$$
\mathbb{P}\left\{\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq t\right\} \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{N}\left(M_{i}-m_{i}\right)^{2}}\right)
$$

Theorem 2.8.2 (Bernstein's inequality). Let $X_{1}, \ldots, X_{N}$ be independent, mean zero, sub-exponential random variables, and $a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$. Then, for every $t \geq 0$, we have

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{N} a_{i} X_{i}\right| \geq t\right\} \leq 2 \exp \left[-c \min \left(\frac{t^{2}}{K^{2}\|a\|_{2}^{2}}, \frac{t}{K\|a\|_{\infty}}\right)\right]
$$

where $K=\max _{i}\left\|X_{i}\right\|_{\psi_{1}}$.

## Further Readings

- Bruce Hajek "Random Processes for Engineers" https://hajek.ece.illinois.edu/ECE534Notes.html


## Cheers

- Next up. Finally some machine learning.

