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New Ref. — Deep Learning

• Very cool book by Francois Fleuret: 
“The Little Book of Deep Learning” 
https://fleuret.org/francois/lbdl.html 

• Strongly recommended— 
Phone-sized PDFs!

https://fleuret.org/francois/lbdl.html


Last Class

• Vectors, Matrices 

• Multiplications (V-V, M-V, M-M) 

• Vector norms                         # not covered matrix norms yet 

• Column/Row/Null Space 

• Eigenvalues, Eigenvectors 

• Eigendecomposition, SVD 

• Today. Gram-Schmidt, Matrix Calculus, Probability.



Gram-Schmidt 
(QR decomposition)



QR Decomposition

• Compact decomposition of matrix   (with ) 

 

•  :    unitary matrix (i.e., ). 

•   :    upper triangular matrix 

A ∈ ℝm×n m ≥ n

A = QR

Q ∈ ℝm×m Q⊤ = Q−1

R ∈ ℝm×n

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0



Idea

 

• This is identical to saying that 

 

                             

                                 

                                              

A = QR

a1 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11

0
0
⋯

, a2 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r12
r22

0
⋯

, ⋯

⇒ a1 = e1r11

a2 = e1r12 + e2r22

⋯



Procedure

,     ,      

• This can be done via Gram-Schmidt process 

• Make  by normlizing . 

• Make  by normalizing the 
remainder  

• repeat …

a1 = e1r11 a2 = e1r12 + e2r22 ⋯

e1 a1

e2
a2 − ⟨a2, e1⟩ ⋅ e1



Matrix decompositions…
• There are many! 

• SVD, QR, Cholesky, LU, … 

• These tend to have different purposes: 

• People use QR for solving . 

• Different strengths / weaknesses (e.g., numerical stability) 

• See section 2 of “Numerical Recipes” for more info.

Ax = y



Matrix Calculus



• Univariate Calculus, to find an optimal parameter. 

• Goal. Find a good “model”  for a single datum. 
          That is, we want to minimize 

 

• How to solve? 
(either explicit solution or iterative method)

c ∈ ℝ

(y0 − cx0)2

Why Matrix Calculus?



Why Matrix Calculus?

• Vector/Matrix Calculus, to find optimal parameters. 

• Goal. Find a good “model”  for high-dim data, 
          with , . That is, we minimize 

 

• How to solve? 
 
(Later, we see even more complicated cases, where we use “gradient descent”)

W ∈ ℝm×n

x0 ∈ ℝn y0 ∈ ℝm

∥y0 − Wx0∥2
2



Gradients

• For a scalar variable , differentiating a… 

scalar function :                  

vector function :             

matrix function :        

x

y ∈ ℝ
∂y
∂x

y ∈ ℝm [ ∂y1

∂x ⋯
∂ym

∂x ]
⊤

Y ∈ ℝm×n

∂y11

∂x ⋯
∂y1n

∂x
⋯

∂ym1

∂x ⋯
∂ymn

∂x



Gradients

• For a vector , differentiating a… 

scalar function :                       (note: direction) 

vector function :            

x ∈ ℝn

y ∈ ℝ [ ∂y
∂x1

⋯ ∂y
∂xn ]

y ∈ ℝm

∂y1

∂x1
⋯ ∂y1

∂xn
⋯

∂ym

∂x1
⋯

∂ym

∂xn



Gradients

• For a matrix , differentiating… 

scalar :                       (note: direction)

x ∈ ℝm×n

y ∈ ℝ

∂y
∂x11

⋯ ∂y
∂xm1

⋯
∂y

∂x1n
⋯ ∂y

∂xmn



References for self-study
• MML book Section 5 

• https://en.wikipedia.org/wiki/Matrix_calculus

https://en.wikipedia.org/wiki/Matrix_calculus


Probability



Probability
• Mathematical foundation due to Kolmogorov (1930s) 

• The probability space  is a triplet of: 

• Sample space  
Set of all possible outcomes. 

• Event space  
Set of all events. 

• Probability measure  
Chances assigned for each event.

(Ω, ℱ, P)

Ω

ℱ

P : ℱ → [0,1]



Probability Space: Tossing a Die
• Consider tossing a die: 

• Sample space 
 

• Event space 

 

• Probability measure (or probability distribution) 
 

(should satisfy certain properties!)

Ω = {1,2,3,4,5,6}

ℱ = {∅, {1}, ⋯, {6}, {1,2}, ⋯, {5,6}, ⋯, {1,2,3,4,5,6}}
P(∅) = 0, P({1}) = 1/6, ⋯, P({1,2,3,4,5,6}) = 1



Probability Measure
• Roughly put, axiomatically defined by these properties: 

•  

•                                   for any  

• ,     whenever  

• called “additivity,” and we expect this to hold for any 
countable number of mutually exclusive events.

P(Ω) = 1

P(A) ≥ 0 A ∈ ℱ

P(A ∪ B) = P(A) + P(B) A ∩ B = ∅

* to generalize to arbitrary space, people use special definitions like -algebra, -additivity, …σ σ



Random Variable



Random Variable
• For good reason, we avoid dealing directly with the probability space. 

• A real-valued function    . 

• Example. For coin tossing where , 
                  we may define a random variable 

. 

• Here, we can say that “the probability of  under ” is equal to . 

• We may use the shorthand 

X : Ω → ℝ

Ω = {H, T}

X(H) = 0, X(T) = 1
X = 0 P P({H})

P(X = 0)



Cumulative Distribution Function (CDF)
• CDF is defined as 

 

• Properties. 

• . 

•  

•  

• If , then 

FX(x) := P(X ≤ x)

0 ≤ FX(x) ≤ 1

FX(−∞) = 0

FX(∞) = 1

x ≤ y FX(x) ≤ FX(y)



Probability Mass Function (PMF)
• Defined for discrete random variables 

  

• Properties. 

•  

•  

•

pX(x) := P(X = x)

0 ≤ pX(x) ≤ 1

∑
x

pX(x) = 1

∑
x∈A

pX(x) = P(X ∈ A)



Probability Density Function (PDF)
• Defined for continuous random variables 

  

• Properties. 

•  

•  

•

fX(s) :=
∂FX(x)

∂x
(s)

0 ≤ fX(x)

∫ℝ
fX(x) dx = 1

∫A
fX(x) dx = P(X ∈ A)



Probability Density Function (PDF)
• PDF is not really the “probability” itself, but gives you an estimate via: 

 

(This is why  is okay)

P(x ≤ X ≤ x + dx) ≈ p(x) dx

p(x) > 1

used interchangeably with fX(x)



Joint distribution
• Defined by some joint CDF 

 

• Marginal CDF can be recovered via 

 

• When discrete, we write joint PMF as 

 

             where we have 

FXY(x, y) = P(X ≤ x, Y ≤ y)

FX(x) = lim
y→∞

FXY(x, y), FY(y) = lim
x→∞

FXY(x, y)

pXY(x, y) = P(X = x, Y = y)

pX(x) = ∑
y

pXY(x, y)



Conditional distribution
• Conditional probability of an event 

 

• Conditional PMF (Discrete) 

 

• Conditional PDF (Continuous) 

P(A |B) =
P(A, B)

P(B)

pY|X(y |x) =
pXY(x, y)

pX(x)

fY|X(y |x) =
fXY(x, y)

f(x)

both A and B happening; , precisely.P(A ∪ B)



Basic arithmetics
• Product rule 

 

• Bayes’ theorem 

p(x, y) = p(y |x)p(x)

p(x |y) =
p(y |x)p(x)

p(y)



Statistics of RV



Expectation (1st order)

Discrete.                            

Continuous.                      

• Properties. 

• ,    for constant . 

•                           (linearity)

𝔼[g(X)] = ∑
x

g(x)pX(x)

𝔼[g(X)] = ∫ℝ
g(x)fX(x) dx

𝔼[a] = a a

𝔼[af(X) + bg(X)] = a𝔼[ f(X)] + b𝔼[g(X)]



 

• Properties. 

• ,    for constant . 

•  

• Standard deviation. 

•

Var[X] := 𝔼[(X − 𝔼[X])2]

Var[a] = 0 a

Var[af(X)] = a2Var[ f(X)]

σX = Var(X)

Variance (2nd order)



• Measures the joint variability of two RVs. 

 

• (Pearson) Correlation. 

 

(thus lies in )

Cov[X, Y] := 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])]

corr[X, Y] =
Cov[X, Y]

σXσY

[−1, + 1]

Covariance & Correlation



Independence



•  and  are independent, whenever 

 

• If this holds, 

•  

•  

•

X Y

p(x, y) = p(x)p(y)

p(y |x) = p(y)

Var[X + Y] = Var[X] + Var[Y]

Cov[X, Y] = 0

Independence



•  and  are conditionally independent given , whenever 

 

    (write ) 

• Theorem. We have  if and only if there exists 
                   two functions  such that  

X Y Z

p(x, y |z) = p(x |z)p(y |z)

X ⊥ Y |Z

X ⊥ Y |Z
g( ⋅ , ⋅ ), h( ⋅ , ⋅ )

p(x, y |z) = g(x, z)h(y, z)

Conditional Independence



Common probability 
distributions



Bernoulli (a.k.a. coin toss)

•  is a binary random variable with 

 

•  

•

X ∼ Bern(p)

P(X = 1) = p, P(X = 0) = 1 − p

𝔼[X] = p

Var[X] = p(1 − p)



Binomial (a.k.a. many coins)

•  is a discrete random variable with 

 

•  

•  

(here, )

X ∼ Bin(n, p)

P(X = k) = (n
k) pk(1 − p)n−k

𝔼[X] = np

Var[X] = np(1 − p)

(n
k) =

n!
k!(n − k)!



Uniform

• Discrete.  is a random variable with 

 

• Continuous.  is a random variable with  

 

• ,         

X ∼ Unif({1,…, k})

P(X = 1) = ⋯ = P(X = k) =
1
k

X ∼ Unif([a, b])

fX(x) =
1

b − a
1{x ∈ [a, b]}

𝔼[X] =
a + b

2
Var[X] =

(b − a)2

12



Gaussian (a.k.a. normal)

•  is a random variable with 

 

• Importance. Central limit theorem 

•  

•

X ∼ 𝒩(μ, σ2)

fX(x) =
1

σ 2π
exp (−

(x − μ)2)
2σ2 )

𝔼[X] = μ

Var[X] = σ2



Beta

•  is a continuous random variable with 

 

• Here,  is the Gamma function 
(complicated, but  for integer ) 

•  

•

X ∼ Beta(α, β)

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, x ∈ [0,1]

Γ( ⋅ )
Γ(α) = (α − 1)! α

𝔼[X] =
α

α + β

Var[X] =
αβ

(α + β)2(α + β + 1)



Gamma

•  is a continuous random variable with 

 

•  

•

X ∼ Gamma(α, β)

fX(x) =
1

Γ(a)
βαxα−1 exp(−βx)

𝔼[X] =
α
β

Var[X] =
α
β2



Concentration Inequalities



Concentration inequalities

• Gives more fine-grained info. on the “tail behavior” of RVs. 

• Typically takes the form: 

 

• Example.  and  has very 
different tails, while they have same mean and variances.

P(X − 𝔼[X] > t) ≤ small value

X ∼ 𝒩(0,1) Y ∼ Unif([− 3, 3])



Standard Inequalities

• Markov. For a nonnegative RV , we have 

 

• Chebyshev. For a RV , we have 

X

P(X ≥ a) ≤
𝔼[X]

a
, ∀a > 0

X

P( |X − E[X] | ≥ a) ≤
Var[X]

a2
, ∀a > 0



Standard Inequalities

• Chernoff. 

 

• Revisit moment-generating functions, 
             cumulant-generating functions, …

P(X ≥ a) ≤ 𝔼[exp(t ⋅ X)] ⋅ exp(−t ⋅ a) ∀a ∈ ℝ, t > 0



Bounded RVs



• Bruce Hajek “Random Processes for Engineers” 
https://hajek.ece.illinois.edu/ECE534Notes.html

Further Readings

https://hajek.ece.illinois.edu/ECE534Notes.html


Cheers

• Next up. Finally some machine learning.


