3. Recap: Matrix Calculus & Basic Probability EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

New Ref. — Deep Learning

- Very cool book by Francois Fleuret: "The Little Book of Deep Learning" https://fleuret.org/francois/lbdl.html
 - Strongly recommended— **Phone-sized PDFs!**

Figure 3.6: Test loss of a language model vs. the amount of computation in petaflop/s-day, the dataset size in tokens, that is fragments of words, and the model size in parameters [Kaplan et al., 2020].

Last Class

- Vectors, Matrices
- Multiplications (V-V, M-V, M-M)
- Vector norms
- Column/Row/Null Space
- Eigenvalues, Eigenvectors
- Eigendecomposition, SVD
- Today. Gram-Schmidt, Matrix Calculus, Probability.

not covered matrix norms yet

Gram-Schmidt (QR decomposition)

QR Decomposition

• Compact decomposition of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ (with $m \ge n$)

- $\mathbf{Q} \in \mathbb{R}^{m \times m}$: unitary matrix (i.e., $Q^{\top} = Q^{-1}$).
- $\mathbf{R} \in \mathbb{R}^{m \times n}$: upper triangular matrix

A = **QR** rix (i.e., $Q^{\top} = Q^{-1}$).

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ & & & & \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

This is identical to saying that

 \Rightarrow **a**₁ = **e**₁r₁₁

 $\mathbf{a}_2 = \mathbf{e}_1 r_{12} + \mathbf{e}_2 r_{22}$

 $\bullet \bullet \bullet$

Procedure

- This can be done via Gram-Schmidt process
 - Make \mathbf{e}_1 by normlizing \mathbf{a}_1 .
 - Make e₂ by normalizing the remainder $\mathbf{a}_2 - \langle \mathbf{a}_2, \mathbf{e}_1 \rangle \cdot \mathbf{e}_1$
 - repeat ...

 $\mathbf{a}_1 = \mathbf{e}_1 r_{11}, \quad \mathbf{a}_2 = \mathbf{e}_1 r_{12} + \mathbf{e}_2 r_{22},$

Matrix decompositions...

- There are many!
 - SVD, QR, Cholesky, LU, ...

- These tend to have different purposes:
 - People use QR for solving Ax = y.
 - Different strengths / weaknesses (e.g., numerical stability)

THIRD EDITION

See section 2 of "Numerical Recipes" for more info.

Why Matrix Calculus?

- Univariate Calculus, to find an optimal parameter.
- Goal. Find a good "model" $c \in \mathbb{R}$ for a single datum. That is, we want to minimize

 How to solve? (either explicit solution or iterative method)

Why Matrix Calculus?

- Vector/Matrix Calculus, to find optimal parameters.
- Goal. Find a good "model" $\mathbf{W} \in \mathbb{R}^{m \times n}$ for high-dim data, with $\mathbf{x}_0 \in \mathbb{R}^n$, $\mathbf{y}_0 \in \mathbb{R}^m$. That is, we minimize $\|\mathbf{y}_0 - \mathbf{W}\mathbf{x}_0\|_2^2$

 - How to solve?

(Later, we see even more complicated cases, where we use "gradient descent")

Gradients

• For a scalar variable *x*, differentiating a...

scalar function $y \in \mathbb{R}$:

vector function $\mathbf{y} \in \mathbb{R}^m$:

matrix function $\mathbf{Y} \in \mathbb{R}^{m \times n}$:

Gradients

• For a vector $\mathbf{x} \in \mathbb{R}^n$, differentiating a... scalar function $y \in \mathbb{R}$:

vector function $\mathbf{y} \in \mathbb{R}^m$:

(note: direction)

Figure 5.2 Dimensionality of (partial) derivatives.

Gradients

• For a matrix $\mathbf{x} \in \mathbb{R}^{m \times n}$, differentiating...

scalar $y \in \mathbb{R}$:

(note: direction)

References for self-study

- MML book Section 5
- <u>https://en.wikipedia.org/wiki/Matrix_calculus</u>

Condition	Expression	Numerator layout, i.e. by y and x^{T}	Deno layout a
\mathbf{a} is not a function of \mathbf{x}	$rac{\partial {f a}}{\partial {f x}} =$	0	
	$rac{\partial {f x}}{\partial {f x}} =$	I	
\mathbf{A} is not a function of \mathbf{x}	$rac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	A	
\mathbf{A} is not a function of \mathbf{x}	$rac{\partial \mathbf{x}^ op \mathbf{A}}{\partial \mathbf{x}} =$	\mathbf{A}^{\top}	
a is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial a {f u}}{\partial {f x}} =$	$a rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	
$v = v(\mathbf{x}),$ a is not a function of x	$rac{\partial v {f a}}{\partial {f x}} =$	$\mathbf{a}rac{\partial v}{\partial \mathbf{x}}$	$\frac{\delta}{\delta}$
$v = v(\mathbf{x}), \mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial v {f u}}{\partial {f x}} =$	$vrac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}rac{\partial v}{\partial \mathbf{x}}$	$v rac{\partial \mathbf{u}}{\partial \mathbf{x}}$
A is not a function of x, $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial \mathbf{A} \mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{A}rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial}{\partial}$
$\mathbf{u} = \mathbf{u}(\mathbf{x}), \mathbf{v} = \mathbf{v}(\mathbf{x})$	$rac{\partial ({f u}+{f v})}{\partial {f x}}=$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$+ rac{\partial \mathbf{v}}{\partial \mathbf{x}}$
$\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial {f g}({f u})}{\partial {f x}} =$	$rac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}}$
$\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial {f f}({f g}({f u}))}{\partial {f x}} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}}{\partial \mathbf{x}}$

Probability

- Mathematical foundation due to Kolmogorov (1930s)
- The **probability space** (Ω, \mathcal{F}, P) is a triplet of:
 - Sample space Ω Set of all possible outcomes.
 - Event space \mathcal{F} Set of all events.
 - Probability measure $P : \mathscr{F} \to [0,1]$ Chances assigned for each event.

Probability Space: Tossing a Die

- Consider tossing a die:
 - Sample space
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Event space $\mathcal{F} = \left\{ \emptyset, \{1\}, \dots, \{6\}, \{1,2\}, \dots, \{5,6\}, \dots, \{1,2,3,4,5,6\} \right\}$
 - Probability measure (or probability distribution) (should satisfy certain properties!)

 $P(\emptyset) = 0, P(\{1\}) = 1/6, \dots, P(\{1,2,3,4,5,6\}) = 1$

Probability Measure

- Roughly put, axiomatically defined by these properties:
 - $P(\Omega) = 1$
 - $P(A) \geq 0$
 - $P(A \cup B) = P(A) + P(B)$, whenever $A \cap B = \emptyset$
 - called "additivity," and we expect this to hold for any countable number of mutually exclusive events.

* to generalize to arbitrary space, people use special definitions like σ -algebra, σ -additivity, ...

- for any $A \in \mathcal{F}$

Random Variable

Random Variable

- For good reason, we avoid dealing directly with the probability space.
- A real-valued function $X: \Omega \to \mathbb{R}$.
 - **Example.** For coin tossing where $\Omega = \{H, T\}$, we may define a random variable
 - $X(H) = 0, \quad X(T) = 1.$
 - Here, we can say that "the probability of X = 0 under P" is equal to $P(\{H\})$.
 - We may use the shorthand P(X = 0)

Cumulative Distribution Function (CDF)

CDF is defined as

- Properties.
 - $0 \leq F_X(x) \leq 1$.
 - $F_X(-\infty) = 0$
 - $F_X(\infty) = 1$
 - If $x \leq y$, then $F_X(x) \leq F_X(y)$

$F_X(x) := P(X \le x)$

Probability Mass Function (PMF)

- Defined for discrete random variables
 - $p_X(x) := P(X = x)$

- Properties.
 - $0 \le p_X(x) \le 1$ • $\sum_{x} p_X(x) = 1$ • $\sum_{x \in A} p_X(x) = P(X \in A)$

Probability Density Function (PDF)

Defined for continuous random variables

• Properties.

•
$$0 \le f_X(x)$$

• $\int_{\mathbb{R}} f_X(x) \, \mathrm{d}x = 1$
• $\int_A f_X(x) \, \mathrm{d}x = P(X \in A)$

$f_X(s) := \frac{\partial F_X(x)}{\partial x}(s)$

Probability Density Function (PDF)

- PDF is not really the "probability" itself, but gives you an estimate via:
 - $P(x \le X \le x + \mathrm{d}x) \approx p(x) \,\mathrm{d}x$

used interchangeably with $f_X(x)$

(This is why p(x) > 1 is okay)

Joint distribution

- Defined by some joint CDF
- $F_{XY}(x, y) = P(X \le x, Y \le y)$ Marginal CDF can be recovered via

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y)$$

• When discrete, we write joint PMF as

where we have
$$p_X(x) = \sum_{y} p_{XY}(x, y) = \sum_{y} p_{XY}(x, y)$$

- y), $F_Y(y) = \lim F_{XY}(x, y)$ $x \rightarrow \infty$
- = P(X = x, Y = y)

Conditional distribution

Conditional probability of an event

both A and B happening; $P(A \cup B)$, precisely. $P(A \mid B) = \frac{P(A, B)}{P(B)}$

- Conditional PMF (Discrete) $p_{Y|X}(y \mid x)$
- Conditional PDF (Continuous)

 $f_{Y|X}(y|$

$$p_{XY}(x,y) = \frac{p_{XY}(x,y)}{p_X(x)}$$

$$x) = \frac{f_{XY}(x, y)}{f(x)}$$

Basic arithmetics

Product rule

Bayes' theorem

$p(x, y) = p(y \mid x)p(x)$

 $p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$

Statistics of RV

Expectation (1st order)

Discrete.

$\mathbb{E}[g(X)] = \sum g(x)p_X(x)$

Continuous.

- Properties.
 - $\mathbb{E}[a] = a$, for constant a.
 - $\mathbb{E}[af(X) + bg(X)] = a\mathbb{E}[f(X)] + b\mathbb{E}[g(X)]$

 $\mathbb{E}[g(X)] = \int_{\mathbb{D}} g(x) f_X(x) \, \mathrm{d}x$

(linearity)

- Properties.
 - Var[a] = 0, for constant *a*.
 - $\operatorname{Var}[af(X)] = a^2 \operatorname{Var}[f(X)]$

Standard deviation.

•
$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

Variance (2nd order)

$\operatorname{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2]$

Covariance & Correlation

- Measures the joint variability of two RVs.
- (Pearson) Correlation.

(thus lies in [-1, +1])

 $\operatorname{Cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

 $\operatorname{corr}[X, Y] = \frac{\operatorname{Cov}[X, Y]}{\sigma_X \sigma_Y}$

Independence

Independence

- X and Y are independent, whenever p(x, y) = p(x)p(y)
 - If this holds,
 - p(y|x) = p(y)
 - Var[X + Y] = Var[X] + Var[Y]
 - Cov[X, Y] = 0

Conditional Independence

- X and Y are conditionally independent given Z, whenever
 - p(x, y | z) = p(x | z)p(y | z)

(write $X \perp Y \mid Z$)

- **Theorem.** We have $X \perp Y \mid Z$ if and only if there exists two functions $g(\cdot, \cdot), h(\cdot, \cdot)$ such that

 - $p(x, y \mid z) = g(x, z)h(y, z)$

Common probability distributions

Bernoulli (a.k.a. coin toss)

- $X \sim \text{Bern}(p)$ is a binary random variable with

- $\mathbb{E}[X] = p$
- Var[X] = p(1 p)

P(X = 1) = p, P(X = 0) = 1 - p

Binomial (a.k.a. many coins)

• $X \sim Bin(n, p)$ is a discrete random variable with

P(X = k) =

• $\mathbb{E}[X] = np$ • Var[X] = np(1 - p)(here, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$)

$$\binom{n}{k} p^k (1-p)^{n-k}$$

- **Discrete.** $X \sim \text{Unif}(\{1, \dots, k\})$ is a random variable with lacksquare $P(X=1) = \cdots$
- Continuous. $X \sim \text{Unif}([a, b])$ is a random variable with

Uniform

$$\cdot = P(X = k) = \frac{1}{k}$$

Gaussian (a.k.a. normal)

• $X \sim \mathcal{N}(\mu, \sigma^2)$ is a random variable with

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}$$

- Importance. Central limit theorem
- $\mathbb{E}[X] = \mu$
- Var[X] = σ^2

Beta

- $X \sim \text{Beta}(\alpha, \beta)$ is a continuous random variable with $f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1}$
 - Here, $\Gamma(\cdot)$ is the Gamma function (complicated, but $\Gamma(\alpha) = (\alpha - 1)!$ for integer α)

•
$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}$$

• $\operatorname{Var}[X] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + \beta)^2}$

$$x \in [0,1]$$

 $x \in [0,1]$
 $x = \beta = 0.5$
 $\alpha = \beta = 0.5$
 $\alpha = 5, \beta = 1$

• $X \sim \text{Gamma}(\alpha, \beta)$ is a continuous random variable with $f_X(x) =$ $\Gamma(a)$ $\mathbb{E}[X] = \frac{\alpha}{\beta}$ • $\operatorname{Var}[X] = \frac{\partial}{\beta^2}$

Gamma

$$-\beta^{\alpha}x^{\alpha-1}\exp(-\beta x)$$

Concentration Inequalities

Concentration inequalities

Gives more fine-grained info. on the "tail behavior" of RVs.

• Typically takes the form:

$P(X - \mathbb{E}[X] > t) \leq \text{small value}$

• Example. $X \sim \mathcal{N}(0,1)$ and $Y \sim \text{Unif}([-\sqrt{3},\sqrt{3}])$ has very different tails, while they have same mean and variances.

Standard Inequalities

- Markov. For a nonnegative RV X, we have
- Chebyshev. For a RV X, we have

$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}, \qquad \forall a > 0$

Standard Inequalities

- Chernoff.
 - - Revisit moment-generating functions,

 $P(X \ge a) \le \mathbb{E}[\exp(t \cdot X)] \cdot \exp(-t \cdot a) \qquad \forall a \in \mathbb{R}, t > 0$

cumulant-generating functions, ...

Bounded RVs

Theorem 2.2.5 (Hoeffding's inequality, two-sided). Let X_1, \ldots, X_N be independent symmetric Bernoulli random variables, and $a = (a_1, \ldots, a_N) \in \mathbb{R}^N$. Then, for any t > 0, we have

$$\mathbb{P}\left\{\left|\sum_{i=1}^{N} a_i X_i\right| \ge t\right\} \le 2\exp\left(-\frac{t^2}{2\|a\|_2^2}\right).$$

Theorem 2.2.6 (Hoeffding's inequality for general bounded random variables). Let X_1, \ldots, X_N be independent random variables. Assume that $X_i \in [m_i, M_i]$ for every *i*. Then, for any t > 0, we have

$$\mathbb{P}\left\{\sum_{i=1}^{N} (X_i - \mathbb{E} X_i) \ge t\right\} \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{N} (M_i - m_i)^2}\right)$$

Theorem 2.8.2 (Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, sub-exponential random variables, and $a = (a_1, \ldots, a_N) \in \mathbb{R}^N$. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{N} a_i X_i \right| \ge t \right\} \le 2 \exp\left[-c \min\left(\frac{t^2}{K^2 \|a\|_2^2}, \frac{t}{K \|a\|_\infty} \right) \right]$$

where $K = \max_{i} \|X_{i}\|_{\psi_{1}}$.

Further Readings

 Bruce Hajek "Random Processes for Engineers" https://hajek.ece.illinois.edu/ECE534Notes.html

• <u>Next up.</u> Finally some machine learning.

