2. Recap: Linear Algebra EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Disclaimer

- Use this slide as a guide for self-study!
- Reference.
- MML book: Chapter 1 - Chapter 6
- Dive into Deep Learning: Sec 2.3.-2.6.

- Stanford CS229
https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
- 3Blue1Brown Youtube "Linear Algebra" https://www.3blue1brown.com/topics/linear-algebra

Why Linear Algebra?

- We use matrices to model the relationship between multi-dimensional input and multi-dimensional output.

model parameter (or "internal state")

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\left[\begin{array}{lllll}
w_{11} & w_{12} & w_{13} & w_{14} & w_{15} \\
w_{21} & w_{22} & w_{23} & w_{24} & w_{25} \\
w_{31} & w_{32} & w_{33} & w_{34} & w_{35} \\
w_{41} & w_{42} & w_{43} & w_{44} & w_{45} \\
w_{51} & w_{52} & w_{53} & w_{54} & w_{55}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]} \\
\mathbf{y} \mathbf{W} \mathbf{~}
\end{gathered}
$$

Vectors and Matrices

Symbol	Typical meaning
$a, b, c, \alpha, \beta, \gamma$	Scalars are lowercase
$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$	Vectors are bold lowercase
$\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$	Matrices are bold uppercase
$\boldsymbol{x}^{\top}, \boldsymbol{A}^{\top}$	Transpose of a vector or matrix
\boldsymbol{A}^{-1}	Inverse of a matrix
$\langle\boldsymbol{x}, \boldsymbol{y}\rangle$	Inner product of \boldsymbol{x} and \boldsymbol{y}
$\boldsymbol{x}^{\top} \boldsymbol{y}$	Dot product of \boldsymbol{x} and \boldsymbol{y}
$B=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right)$	(Ordered) tuple
$\boldsymbol{B}=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{\boldsymbol{b}}, \boldsymbol{b}_{3}\right]$	Matrix of column vectors stacked horizontally
$\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right\}$	Set of vectors (unordered)
\mathbb{Z}, \mathbb{N}	Integers and natural numbers, respectively
\mathbb{R}, \mathbb{C}	Real and complex numbers, respectively
\mathbb{R}	n-dimensional vector space of real numbers

Symbol	Typical meaning
$\forall x$	Universal quantifier: for all x
$\exists x$	Existential quantifier: there exists x
$a:=b$	a is defined as b
$a=: b$	b is defined as a
$a \propto b$	a is proportional to b, i.e., $a=$ constant $\cdot b$
$g \circ f$	Function composition: " g after $f "$
\Longleftrightarrow	If and only if
\Longrightarrow	Implies
\mathcal{A}, \mathcal{C}	Sets
$a \in \mathcal{A}$	a is an element of set \mathcal{A}
\emptyset	Empty set
$\mathcal{A} \backslash \mathcal{B}$	\mathcal{A} without \mathcal{B} : the set of elements in \mathcal{A} but not in \mathcal{B}

Symbol	Typical meaning		
\boldsymbol{I}_{m}	Identity matrix of size $m \times m$		
$\mathbf{0}_{m, n}$	Matrix of zeros of size $m \times n$		
$\mathbf{1}_{m, n}$	Matrix of ones of size $m \times n$		
\boldsymbol{e}_{i}	Standard/canonical vector (where i is the component that is 1)		
dim	Dimensionality of vector space		
$\operatorname{rk}(\boldsymbol{A})$	Rank of matrix \boldsymbol{A}		
$\operatorname{Im}(\Phi)$	Image of linear mapping Φ		
$\operatorname{ker}(\Phi)$	Kernel (null space) of a linear mapping Φ		
$\operatorname{span}\left[\boldsymbol{b}_{1}\right]$	Span (generating set) of \boldsymbol{b}_{1}		
$\operatorname{tr}(\boldsymbol{A})$	Trace of \boldsymbol{A}		
$\operatorname{det}(\boldsymbol{A})$	Determinant of \boldsymbol{A}		
$\|\cdot\|$	Absolute value or determinant (depending on context)		
$\\|\cdot\\|$	Norm; Euclidean, unless specified		
$\boldsymbol{x} \perp \boldsymbol{y}$	Vectors \boldsymbol{x} and \boldsymbol{y} are orthogonal		
V	Vector space		
V^{\perp}	Orthogonal complement of vector space V		

Quiz \# 1

Let there be a vector $\mathbf{x} \in \mathbb{R}^{n}$ (we use boldcase, usually) This is ...
(a)

$$
\text { (b) } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

Answer

Let there be a vector $\mathbf{x} \in \mathbb{R}^{n}$.
This is ...
(a)

$$
\mathbf{x}^{\top}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

We call this " \mathbf{x} transposed"
(b)
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ \cdots \\ x_{n}\end{array}\right]$

Quiz \# 2

Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. (bold uppercase)
This is ...
(a) $\mathbf{A}=\left[\begin{array}{llll}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{1 n} \\ a_{m 1} & a_{m 2} & \cdots & x_{m n}\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{m 1} \\ a_{12} & a_{22} & \cdots & a_{m 2} \\ & & \cdots & \\ a_{1 n} & a_{2 n} & \cdots & x_{m n}\end{array}\right]$

Answer

Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. (bold uppercase)
This is ...
m rows and n columns...

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n} \\
\mid & & \mid
\end{array}\right] \\
& \mathbf{A}=\left[\begin{array}{lll}
- & \mathbf{a}_{1}^{\top} & - \\
& \cdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right]
\end{aligned}
$$

Multiplications

Vector products

- Two types: Inner / Outer.

Inner product (a.k.a. dot product)

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

alternate notation
(only called inner, more general)

$$
\langle\mathbf{x}, \mathbf{y}\rangle
$$

Outer product

$$
\mathbf{x y}{ }^{\top}=\left[\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{n} \\
& \cdots & \\
x_{m} y_{1} & \cdots & x_{m} y_{n}
\end{array}\right]
$$

Not very frequent though.

Matrix-Vector Multiplications

- Performing many inner products with row vectors.
- or, we are summing many column vectors

$$
\mathbf{W} \mathbf{x}=\left[\begin{array}{ccc}
- & \mathbf{w}_{1}^{\top} & - \\
& \cdots & \\
- & \mathbf{w}_{m}^{\top} & -
\end{array}\right] \mathbf{x} \quad=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \mathbf{x} \\
\cdots \\
\mathbf{w}_{m}^{\top} \mathbf{x}
\end{array}\right]
$$

Matrix-Vector Multiplications

- Performing many inner products with row vectors.
- or, a weighted sum of column vectors

$$
\mathbf{W} \mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{w}_{1} & \cdots & \mathbf{w}_{n} \\
\mid & & \mid
\end{array}\right] \mathbf{x} \quad=x_{1} \mathbf{w}_{1}+\cdots+x_{n} \mathbf{w}_{n}
$$

Physical Meaning ... System perspective

The matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be viewed as axis transformation

Matrix-Matrix Multiplications

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B}=\mathbb{R}^{n \times p}$.
- Performing $m \times p$ inner products

$$
\mathbf{A B}=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
& \cdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{b}_{1} & \cdots & \mathbf{b}_{p} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{a}_{1}^{\top} \mathbf{b}_{1} & \cdots & \mathbf{a}_{1}^{\top} \mathbf{b}_{p} \\
\cdots & \cdots & \cdots \\
\mathbf{a}_{m}^{\top} \mathbf{b}_{1} & \cdots & \mathbf{a}_{m}^{\top} \mathbf{b}_{p}
\end{array}\right]
$$

Matrix-Matrix Multiplications

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B}=\mathbb{R}^{n \times p}$.
- Performing $m \times p$ inner products
- or performing n outer products

$$
\mathbf{A B}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & \mathbf{b}_{1} & - \\
& \cdots & \\
- & \mathbf{b}_{n} & -
\end{array}\right]=\mathbf{a}_{1} \mathbf{b}_{1}^{\top}+\cdots+\mathbf{a}_{n} \mathbf{b}_{n}^{\top}
$$

Matrix-Matrix Multiplications

- Equivalently written as matrix-vector muliplications

$$
\mathbf{A B}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{A b}_{1} & \cdots & \mathbf{A} \mathbf{b}_{p} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} \mathbf{B} & - \\
& \cdots & \\
- & \mathbf{a}_{m}^{\top} \mathbf{B} & -
\end{array}\right]
$$

Quiz \# 3

To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B}=\mathbb{R}^{n \times p}$, how many scalar multiplications do we need?

Answer

To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B}=\mathbb{R}^{n \times p}$, how many scalar multiplications do we need?

Answer. $m \times n \times p$.
Because we do $m \times p$ inner prods, and each inner prod requires n multiplications.

Norms

Norm

- A measure of "length": \|•\|(: $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
- Defined by the following properties:
- Nonnegative:

$$
\begin{aligned}
& \|\mathbf{x}\| \geq 0 \\
& \|\mathbf{x}\|=0 \text { iff } \mathbf{x}=\mathbf{0}
\end{aligned}
$$

- Definite:
- Absolute homogeneity:
$\|c \mathbf{x}\|=|c| \cdot\|\mathbf{x}\|$
- Triangle inequality:

$$
\|\mathbf{x}\|+\|\mathbf{y}\| \geq\|\mathbf{x}+\mathbf{y}\|
$$

Norm

- For a vector $\mathbf{x} \in \mathbb{R}^{n}$:
- The ℓ_{2} norm: $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
- The ℓ_{1} norm: $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
- The ℓ_{p} norm: $\quad\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$
- The ℓ_{∞} norm: $\|\mathbf{x}\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|x_{i}\right|$

Column/Row/Null Space

Linear Independence

- Linear combination.

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{k} \mathbf{x}_{k}
$$

- The vectors $\mathbf{x}_{1}, \cdots, \mathbf{x}_{k}$ are linearly independent whenever

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{k} \mathbf{x}_{k}=0 \quad \text { iff } \quad \lambda_{1}=\cdots=\lambda_{k}=0
$$

- i.e., no vector is a linear combination of remainders.

Span

- The set (space) of all linear combinations

$$
\operatorname{span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}\right)=\left\{\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{k} \mathbf{x}_{k} \mid \lambda_{i} \in \mathbb{R}, \quad \forall i \in[n]\right\}
$$

- example. \mathbb{R}^{2} is spanned by

$$
\left\{\begin{array}{ll|l|l|l|}
\end{array}\right.
$$

Basis

- A minimal set $A=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ that spans the vector space V.
- example. (one of the) the bases of \mathbb{R}^{2} is

$$
\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
1
\end{array}\right]\right\}
$$

- property. basis is linearly independent, and adding any element breaks the independence.

Column space

- The column space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the space spanned by column vectors of \mathbf{A} :

$$
C(\mathbf{A})=\left\{\lambda_{1} \mathbf{a}_{1}+\cdots+\lambda_{n} \mathbf{a}_{n} \mid \lambda_{i} \in \mathbb{R}, \forall i \in[n]\right\} \subseteq \mathbb{R}^{m}
$$

recall p. 15

- One can also write:

$$
\mathbf{W} \mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{w}_{1} & \cdots & \mathbf{w}_{n} \\
\mid & & \mid
\end{array}\right] \mathbf{x}=x_{1} \mathbf{w}_{1}+\cdots+x_{n} \mathbf{w}_{n}
$$

$$
C(\mathbf{A})=\left\{\mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Row space

- Similarly, the row space is:

$$
R(\mathbf{A})=\left\{\mathbf{A}^{\top} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{m}\right\} \quad \subseteq \mathbb{R}^{n}
$$

*unfortunately, no clean "physical meaning" as column space... except that one-to-one correspondence holds between $R(\mathbf{A})$ and $\mathbf{C}(\mathbf{A})$

Null space

- The null space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$
N(\mathbf{A})=\left\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0}, \quad \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

physical meaning: the set of inputs that you get $\mathbf{0}$ as an output

- The left null space is defined as $N\left(\mathbf{A}^{\top}\right) \in \mathbb{R}^{m}$

Rank

- The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is...
- the number of linearly independent columns
- the number of linearly independent rows
- Properties.
- $\operatorname{rank}(\mathbf{A}) \leq \min \{m, n\}$
- $\operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$
- $\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$

Inverse

- For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the inverse matrix $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ is a matrix such that

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}_{n}
$$

(not always invertible-called singular matrix)

- Properties.
- The inverse exists iff $\operatorname{rank}(\mathbf{A})=n \quad$ (call this "non-singular")
- $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}, \quad(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}, \quad\left(\mathbf{A}^{\top}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\top}$

Special Matrices

Identity Matrix

$$
\mathbf{I}_{n}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

- Acts as " 1 " in the space of matrices

$$
\mathbf{A} \mathbf{I}_{n}=\mathbf{I}_{m} \mathbf{A}=\mathbf{A}
$$

Diagonal Matrix

$$
\mathbf{D}=\left[\begin{array}{ccccc}
d_{1} & 0 & \cdots & 0 & 0 \\
0 & d_{2} & \cdots & 0 & 0 \\
& & \cdots & & \\
0 & 0 & \cdots & d_{n-1} & 0 \\
0 & 0 & \cdots & 0 & d_{n}
\end{array}\right]
$$

(the system where each output is a scaled version of input)

Orthogonal/Orthonormal Matrix

- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonal when the columns are orthogonal to each other, i.e.,

$$
\mathbf{a}_{i}^{\top} \mathbf{a}_{j}=0, \quad \forall i \neq j
$$

- Orthonormal when we further have

$$
\left\|\mathbf{a}_{i}\right\|_{2}=1, \quad \forall i \in[n]
$$

- Then, we have $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}=\mathbf{I}_{n}$

Property of an orthonormal matrix

- If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthonormal,
- $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}=\mathbf{I}_{n}$
- The matrix preserves the norm, i.e., $\|\mathbf{A} \mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}$. Proof. We proceed as

$$
\|\mathbf{A x}\|_{2}=\sqrt{(\mathbf{A x})^{\top} \mathbf{A} \mathbf{x}}=\sqrt{\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}}=\sqrt{\mathbf{x}^{\top} \mathbf{x}}=\|\mathbf{x}\|_{2}
$$

Symmetric Matrix

- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if

$$
\mathbf{A}^{\top}=\mathbf{A}
$$

- Properties. Real-valued symmetric matrices have
- real eigenvalues
- orthogonal eigenvectors (useful for SVD)

Definite Matrix

- Positive-semidefinite. For any $\mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$.
- Positive-definite. For any $\mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0$. (similar for negative)

Eigenvalues / Eigenvectors

Eigenvalues \& Eigenvectors

- A non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ when

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

holds for some λ (the eigenvalue).
physical meaning. output is the same direction as input

- Determinant $|\mathbf{A}|$. Product of all eigenvalues.
- Trace $\operatorname{Tr}(\mathbf{A})$.

Sum of all eigenvalues.

Eigen-decomposition

- Build a column matrix of all (unit norm) eigenvectors, \mathbf{X} (and Λ a diagonal matrix of respective eigenvalues)
- Then, we have

$$
\mathbf{A X}=\mathbf{X} \Lambda
$$

- Sometimes, \mathbf{X} is invertible (diagonalizable) and we can do

$$
\mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{-1}
$$

Eigen-decomposition

$$
\mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{-1}
$$

- When this is possible, the "model" \mathbf{A} is sequentially performing:
- $\mathbf{X}^{-1}=$ send input to another space.
- $\Lambda \quad=$ do entrywise scaling
- $\mathbf{X}=$ pull back to original space.
- Homework. Watch https://www.3blue1brown.com/lessons/eigenvalues for visual insights.

Singular Value Decomposition

- SVD decomposes a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- $\mathbf{U} \in \mathbb{R}^{m \times m}$ with $\mathbf{U}^{\top} \mathbf{U}=\mathbf{U} \mathbf{U}^{\top}=\mathbf{I}_{m}$
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ with $\mathbf{V}^{\top} \mathbf{V}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{I}_{n}$
- Σ is a diagonal matrix (with zero paddings).

Singular Value Decomposition

$\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$

- How?
- Construct \mathbf{U} with eigenvectors of $\mathbf{A} \mathbf{A}^{\top}$.
- $\mathbf{A} \mathbf{A}^{\top}$ is real symmetric, and thus have orthogonal eigenvectors.
- Construct \mathbf{V} with eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$.
- Compute Σ with the square-root of eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

Singular Value Decomposition

Cheers

- Next up. Gram-Schmidt, Matrix Calculus, Basic Probability.

