2. Recap: Linear Algebra EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Disclaimer

- Use this slide as a <u>guide for self-study</u>!
- Reference.
 - <u>MML book:</u> Chapter 1 Chapter 6
 - <u>Dive into Deep Learning</u>: Sec 2.3.—2.6.
 - Stanford CS229 https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
 - 3Blue1Brown Youtube "Linear Algebra" https://www.3blue1brown.com/topics/linear-algebra

Why Linear Algebra?

We use matrices to model the relationship between multi-dimensional input and multi-dimensional output.

model parameter (or "internal state") . W₁₁ *y*₁ *y*₂ $W_{12} \quad W_{13} \quad W_{14}$ x_1 W_{15} $w_{22} \quad w_{23} \quad w_{24}$ W_{25} x_2 W_{21} *y*₃ x_3 W₃₁ W_{32} W_{33} W_{34} W₃₅ X_4 W_{42} W_{43} W_{44} *y*₄ W_{45} W_{41} W_{52} W_{53} W_{54} x_5 W_{51} W_{55} y_5

 $\mathbf{y} = \mathbf{W}\mathbf{x}$

Vectors and Matrices

Symbol

 $a, b, c, \alpha, \beta, \gamma$ $oldsymbol{x},oldsymbol{y},oldsymbol{z}$ $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ $\boldsymbol{x}^{\mathsf{T}}, \boldsymbol{A}^{\mathsf{T}}$ A^{-1} $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ $x^{\top}y$ $B = [b_1, b_2, b_3]$ $\mathcal{B} = \{ b_1, b_2, b_3 \}$ \mathbb{Z},\mathbb{N} \mathbb{R},\mathbb{C} \mathbb{R}^{n}

Typical meaning

Scalars are lowercase Vectors are bold lowercase Matrices are bold uppercase Transpose of a vector or matrix Inverse of a matrix Inner product of x and yDot product of x and y $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ (Ordered) tuple Set of vectors (unordered)

- Matrix of column vectors stacked horizontally Integers and natural numbers, respectively Real and complex numbers, respectively *n*-dimensional vector space of real numbers

Symbol	Typical meaning
$\forall x$	Universal quantifier
$\exists x$	Existential quantifie
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to
$g\circ f$	Function composition
\Leftrightarrow	If and only if
\implies	Implies
\mathcal{A},\mathcal{C}	Sets
$a \in \mathcal{A}$	a is an element of s
Ø	Empty set
$\mathcal{A} ackslash \mathcal{B}$	$\mathcal A$ without $\mathcal B$: the se

r: for all *x* er: there exists *x*

b, i.e., $a = \text{constant} \cdot b$ on: "g after f"

set \mathcal{A}

et of elements in ${\mathcal A}$ but not in ${\mathcal B}$

Symbol	Typical meaning	
I_m	Identity matrix of si	
$0_{m,n}$	Matrix of zeros of si	
$1_{m,n}$	Matrix of ones of siz	
$oldsymbol{e}_i$	Standard/canonical	
\dim	Dimensionality of ve	
$\operatorname{rk}(\boldsymbol{A})$	Rank of matrix A	
$\operatorname{Im}(\Phi)$	Image of linear map	
$\ker(\Phi)$	Kernel (null space)	
$\operatorname{span}[m{b}_1]$	Span (generating se	
tr(A)	Trace of \boldsymbol{A}	
$\det(\boldsymbol{A})$	Determinant of \boldsymbol{A}	
·	Absolute value or de	
	Norm; Euclidean, u	
$oldsymbol{x}\perpoldsymbol{y}$	Vectors \boldsymbol{x} and \boldsymbol{y} are or	
V	Vector space	
V^{\perp}	Orthogonal complement	

size $m \times m$ size $m \times n$ ize $m \times n$ al vector (where *i* is the component that is 1) vector space

pping Φ of a linear mapping Φ set) of \boldsymbol{b}_1

determinant (depending on context) unless specified

rthogonal

ent of vector space V

Let there be a vector $\mathbf{x} \in \mathbb{R}^n$ (we use boldcase, usually) This is ...

(a)

$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$

Quiz #1

(b)

Let there be a vector $\mathbf{x} \in \mathbb{R}^n$. This is ...

(a)

 $\mathbf{x}^{\mathsf{T}} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ We call this "x transposed"

Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. (bold uppercase) This is ...

Quiz # 2

(a) $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{1n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & x_{mn} \end{bmatrix}$ (b) $\mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ & & & & \\ a_{1n} & a_{2n} & \cdots & x_{mn} \end{bmatrix}$

Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. (bold uppercase) This is ... *m* rows and *n* columns...

(9)	a_{11}	<i>a</i> ₁₂	• • •	a_{1n}
$\mathbf{A} =$	<i>a</i> ₂₁	a_{22}	• • •	a_{1n}
			• • •	
	a_{m1}	a_{m2}	• • •	X _{mn}

Answer

Multiplications

Vector products

Two types: Inner / Outer.

Inner product (a.k.a. dot product)

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

alternate notation (only called inner, more general)

 $\langle \mathbf{X}, \mathbf{y} \rangle$

Outer product $\mathbf{x}\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} x_1y_1 & \cdots & x_1y_n \\ & \cdots & & \\ x_my_1 & \cdots & x_my_n \end{bmatrix}$

Not very frequent though.

Matrix-Vector Multiplications

- Performing many inner products with row vectors.
 - or, we are summing many column vectors

Matrix-Vector Multiplications

Performing many inner products with row vectors.

• or, a weighted sum of column vectors

Physical Meaning ... System perspective

The matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be viewed as axis transformation

Matrix-Matrix Multiplications

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$.
- Performing *m* × *p* inner products

Matrix-Matrix Multiplications

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$.
- Performing *m* X *p* inner products
- or performing *n* outer products

Matrix-Matrix Multiplications

Equivalently written as matrix-vector muliplications

To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$, how many scalar multiplications do we need?

Quiz # 3

Answer

To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$, how many scalar multiplications do we need?

Answer. $m \times n \times p$. Because we do $m \times p$ inner prods, and each inner prod requires *n* multiplications.

- A measure of "length": $\| \cdot \| (: \mathbb{R}^n \to \mathbb{R})$
- Defined by the following properties:
 - Nonnegative:
 - Definite:
 - Absolute homogeneity:
 - Triangle inequality:

Norm

 $\|\mathbf{x}\| \ge 0$ $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$ $\|C\mathbf{X}\| = \|C\| \cdot \|\mathbf{X}\|$ $||\mathbf{x}|| + ||\mathbf{y}|| \ge ||\mathbf{x} + \mathbf{y}||$

- For a vector $\mathbf{x} \in \mathbb{R}^n$:
 - The ℓ_2 norm: $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$
 - The ℓ_1 norm: $\|\mathbf{x}\|_1 = |x_1| + \dots + |x_n|$
 - The ℓ_p norm: $\|\mathbf{x}\|_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$
 - The ℓ_{∞} norm: $\|\mathbf{x}\|_{\infty} = \max \|x_i\|$

Norm

Column/Row/Null Space

Linear Independence

Linear combination.

 $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k = 0$ iff $\lambda_1 = \cdots = \lambda_k = 0$

$$\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k$$

• The vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent whenever

i.e., no vector is a linear combination of remainders.

Span

- The set (space) of all linear combinations $\operatorname{span}(\{\mathbf{x}_1, \dots, \mathbf{x}_k\}) = \left\{\lambda_1 \mathbf{x}_1 + \right\}$
 - example. \mathbb{R}^2 is spanned by

$$-\cdots + \lambda_k \mathbf{x}_k \mid \lambda_i \in \mathbb{R}, \quad \forall i \in [n]$$

 $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

• A minimal set $A = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ that spans the vector space V.

• example. (one of the) the bases of \mathbb{R}^2 is $\left\{ \begin{array}{c} 1\\3 \end{array}, \begin{bmatrix} 4\\1 \end{bmatrix} \right\}$

 property. basis is linearly independent, and adding any element breaks the independence.

Basis

Column space

column vectors of A: $C(\mathbf{A}) = \left\{ \lambda_1 \mathbf{a}_1 + \cdots + \lambda_n \mathbf{a}_n \right\}$

• One can also write:

physical meaning: the set of outputs you can get from a model

• The column space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the space spanned by

$$_{n} \mid \lambda_{i} \in \mathbb{R}, \forall i \in [n] \} \subseteq \mathbb{R}^{m}$$

$$\mathbf{W}\mathbf{x} = \begin{bmatrix} | & | \\ \mathbf{w}_1 & \cdots & \mathbf{w}_n \\ | & | \end{bmatrix} \mathbf{x} = x_1\mathbf{w}_1 + \cdots$$

$C(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$

Row space

• Similarly, the row space is:

*unfortunately, no clean "physical meaning" as column space... except that one-to-one correspondence holds between R(A) and C(A)

$R(\mathbf{A}) = \{\mathbf{A}^{\mathsf{T}}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$

• The null space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is $N(\mathbf{A}) = \left\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0}, \quad \mathbf{x} \in \mathbb{R}^n \right\}$

physical meaning: the set of inputs that you get $\mathbf{0}$ as an output

• The left null space is defined as $N(\mathbf{A}^{\top}) \in \mathbb{R}^{m}$

Null space

- The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is...
 - the number of linearly independent columns
 - the number of linearly independent rows
- Properties.
 - $\operatorname{rank}(\mathbf{A}) \le \min\{m, n\}$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$

Rank

Inverse

• For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the inverse matrix $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ is a matrix such that

- Properties.
 - The inverse exists iff $rank(\mathbf{A}) = n$ (call this "non-singular") • $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$, $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$, $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$

- $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$
 - (not always invertible—called singular matrix)

Identity Matrix $\mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & & \cdots & & \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$

- Acts as "1" in the space of matrices

(the system where the input is equal to the output)

(the system where each output is a scaled version of input)

Orthogonal/Orthonormal Matrix

- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonal when the columns are orthogonal to each other, i.e., $\mathbf{a}_i \mathbf{a}_j = 0, \quad \forall i \neq j$
- Orthonormal when we further have $\|\mathbf{a}_i\|_2 = 1, \quad \forall i \in [n]$ • Then, we have $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}_n$

Property of an orthonormal matrix

- If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthonormal,
 - $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}_n$
 - The matrix preserves the Proof. We proceed as $\|\mathbf{A}\mathbf{x}\|_{2} = \sqrt{(\mathbf{A}\mathbf{x})^{T}}\mathbf{A}$

• The matrix preserves the norm, i.e., $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$.

 $\|\mathbf{A}\mathbf{x}\|_{2} = \sqrt{(\mathbf{A}\mathbf{x})^{\mathsf{T}}\mathbf{A}\mathbf{x}} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \|\mathbf{x}\|_{2}$

Symmetric Matrix

• A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if

• Properties. Real-valued symmetric matrices have

- real eigenvalues
- orthogonal eigenvectors (useful for SVD)

Definite Matrix

- Positive-definite.

• Positive-semidefinite. For any $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq \mathbf{0}$. For any $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > \mathbf{0}$.

(similar for negative)

Eigenvalues / Eigenvectors

Eigenvalues & Eigenvectors

- A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ when $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
 - holds for some λ (the eigenvalue). physical meaning. output is the same direction as input

- **Determinant** $|\mathbf{A}|$. Product of all eigenvalues.
- **Trace** Tr(A). Sum of all eigenvalues.

Eigen-decomposition

- Build a column matrix of all (unit norm) eigenvectors, X (and Λ a diagonal matrix of respective eigenvalues)
- Then, we have

- Sometimes, ${\bf X}$ is invertible (diagonalizable) and we can do

$\mathbf{A}\mathbf{X} = \mathbf{X}\Lambda.$

 $\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}.$

Eigen-decomposition

- When this is possible, the "model" A is sequentially performing:
 - \mathbf{X}^{-1} = send input to another space.
 - Λ = do entrywise scaling
 - X = pull back to original space.
- for visual insights.

<u>Homework</u>. Watch <u>https://www.3blue1brown.com/lessons/eigenvalues</u>

Singular Value Decomposition

• SVD decomposes a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into

- $\mathbf{U} \in \mathbb{R}^{m \times m}$ with $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}_m$
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ with $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}_n$
- Σ is a diagonal matrix (with zero paddings).

Atrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

 $\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}_m$ $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}_n$

Singular Value Decomposition $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}}$

- How?
 - Construct U with eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$.
 - $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ is real symmetric, and thus have orthogonal eigenvectors.
 - Construct V with eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$.
 - Compute Σ with the square-root of eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$.

Singular Value Decomposition

• <u>Next up.</u> Gram-Schmidt, Matrix Calculus, Basic Probability.

