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By now…
You might have noticed that 
ML involves much engineering. 

Evidences. 

• Your own experience. 

• NeurIPS 2017 test-of-time 
award titled “ML has become 
alchemy” by Ali Rahimi 

• The science magazine article ->

Hutchinson,�“Has�artificial�intelligence�become�alchemy?”�Science,�2018



Point of Criticism
The (continued) lack of theoretical understanding on DL.

2017

2021



Today
Still, many theoreticians are on a quest to 

“mathematically formalize how deep learning works.” 

We take a glimpse on many topics of Machine Learning Theory.



Basic Framework



Framework
A machine learning task can be described by three things: 

• The dataset                        

• The hypothesis space      

• The loss function              

Goal. Find a nice parameter  from , such that 

D = {z1, …, zn}

ℱ = {fθ : θ ∈ Θ}

ℓ( f, z)

̂θ D

𝔼[ℓ( f ̂θ, z)] ≈ min
θ∈Θ

𝔼[ℓ( fθ, z)]

=:L(θ)



Algorithm
ML algorithms are empirical risk minimization, i.e., approximately solves 

 

Reason. If we have many data, we have 

min
θ

1
n

n

∑
i=1

ℓ( fθ, zi)

=:L̂(θ)

L(θ) ≈ L( ̂θ) for any θ ∈ Θ



Decomposing the “test risk”

We are interested in characterizing the test risk, of the learned , i.e., 

 

This can be broken down as: 

 

•     : Excess risk 

•     : Minimum error one could get from the hypothesis space. 
      (approximation)

̂θ

L( ̂θ)

L( ̂θ) − min
θ∈Θ

L(θ) + min
θ∈Θ

L(θ)



Decomposing the “excess risk”
The excess risk can be decomposed as 

 

 

•     : How similar test risk is to training risk. 
      (Generalization)

L( ̂θ) − L(θ*)

= L( ̂θ) − L̂( ̂θ) + L̂( ̂θ) − L̂(θ*) + L̂(θ*) − L(θ*)



Decomposing the “excess risk”
The excess risk can be decomposed as 

 

 

•     : How similar test risk is to training risk. 
      (Generalization) 

The yellow term can be further decomposed as: 

L( ̂θ) − L(θ*)

= L( ̂θ) − L̂( ̂θ) + L̂( ̂θ) − L̂(θ*) + L̂(θ*) − L(θ*)

L̂( ̂θ) − L̂(θ*) = (L̂( ̂θ) − min
θ∈Θ

L̂(θ)) + min
θ∈Θ

L̂(θ) − L̂(θ*)

How well  solves ERM (Optimization)̂θ <= zero, always



Three elements of Learning theory
From this perspective, learning theory is primarily about 
developing mathematical tools for three objects: 

• Approximation.         

• Generalization.          

• Optimization.            

min
θ∈Θ

L(θ)

L̂( ̂θ) − L( ̂θ)

L̂( ̂θ) − min
θ∈Θ

L̂(θ)
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If  is very big. we expect approximation 👍 
                                               generalization 👎 
                                               optimization 🤔

min
θ∈Θ

L(θ)
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θ∈Θ

L̂(θ)

Θ



Three elements of Learning theory
From this perspective, learning theory is primarily about 
developing mathematical tools for three objects: 

• Approximation.         

• Generalization.          

• Optimization.             

If  is very big. we expect approximation 👍 
                                               generalization 👎 
                                               optimization 🤔

min
θ∈Θ
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Reality. All 👍 for DL!



Approximation



Approximation
Formal version. 
For any ground-truth function ,                                  # e.g., human label 
there exists a nice parameter  such that 

 

(or alternatively, )

g(z)
θ ∈ Θ

𝔼[∥fθ(z) − g(z)∥2] < ϵ

sup
z

∥fθ(z) − g(z)∥ < ϵ



Universal Approximation Theorem
DL. Several old results state that 
       two-layer neural network can approximate any function. 
       (given sufficient width)

Cybenko,�“Approximation�by�superpositions�of�a�sigmoidal�function”�1989



UAT (depth ver.)
Recent works show that one can prove similar results for thin networks, 
given sufficient depths.



Generalization



Generalization
Classic idea. If there are too many parameters, 
                        the learned function should overfit.



Generalization
Classic results. With high probability, we have … 

sup
θ

|L(θ) − L̂(θ) | ≤ C ⋅
log |Θ |

n

Number of Parameters



Generalization
DL. Generalization gets better with more parameters



Generalization
DL. Generalization gets better with more parameters? 
       (still not fully understood!)



Optimization



Optimization
Classic idea. If convex, SGD converges well. 
                        If nonconvex, SGD may not really converge.



Optimization
DL. Highly nonconvex, yet converges well 
        (especially for very big models)



Remarks



Concluding Remarks
• ML is still full of mysteries. 

• Especially because you need to handle data 
(highly random and difficult to characterize; no Gaussian works!) 

• Still needs some alchemy. 

• Part annoying, part fun. 

• Waiting for new challengers to unravel the mystery…



Cheers


