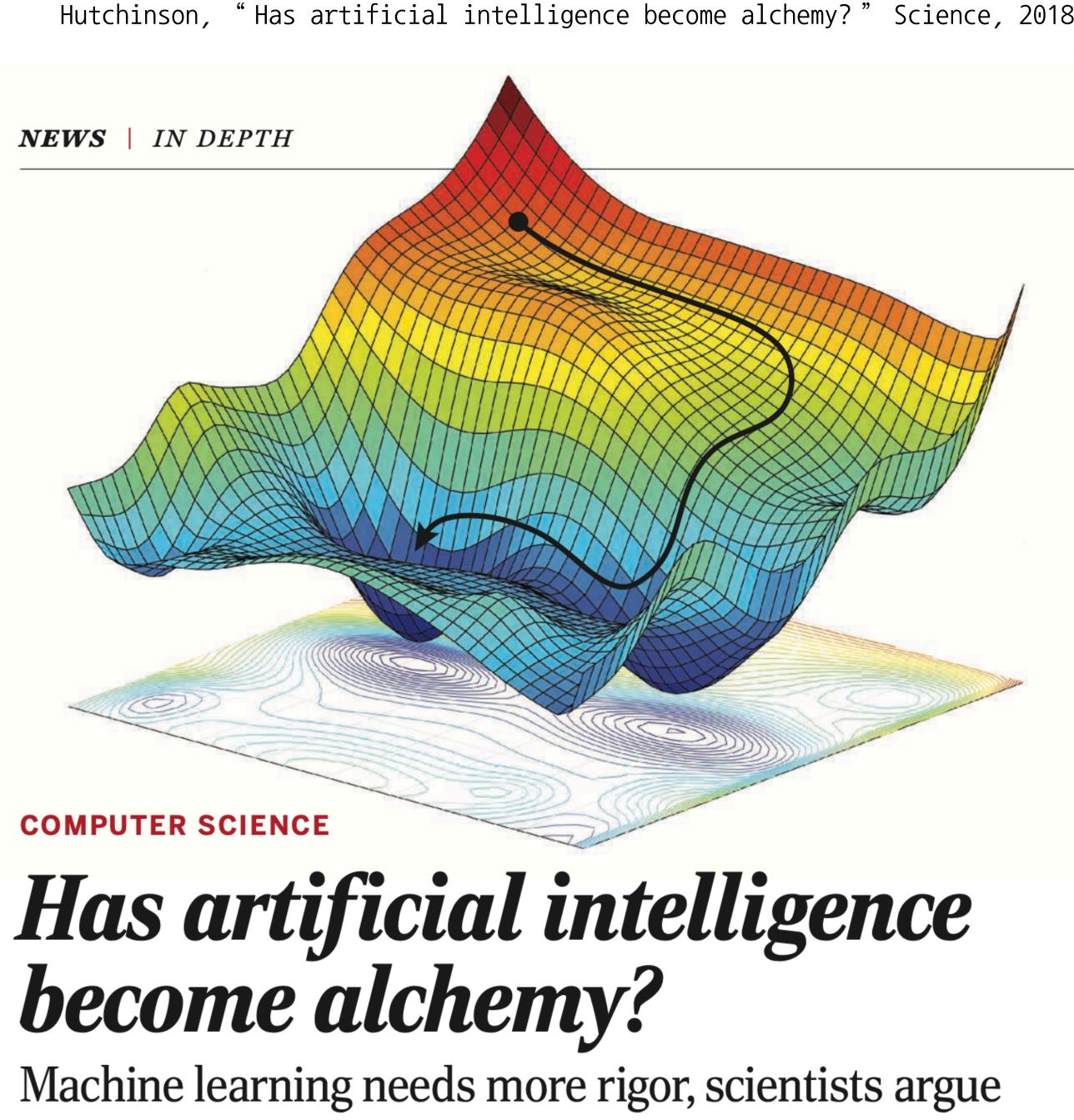
25. Topics in ML Theory EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

By now...

You might have noticed that ML involves much engineering. **Evidences**.

- Your own experience.
- NeurIPS 2017 test-of-time award titled "ML has become alchemy" by Ali Rahimi
- The science magazine article ->



Point of Criticism

The (continued) lack of theoretical understanding on DL.

UNDERSTANDING DEEP LEARNING REQUIRES THINKING GENERALIZATION

Chiyuan Zhang* Massachusetts Institute of Technology chiyuan@mit.edu

Benjamin Recht[†] University of California, Berkeley brecht@berkeley.edu

Samy Bengio Google Brain bengio@google.com

> **Oriol Vinyals** Google DeepMind vinyals@google.com

2021

2017

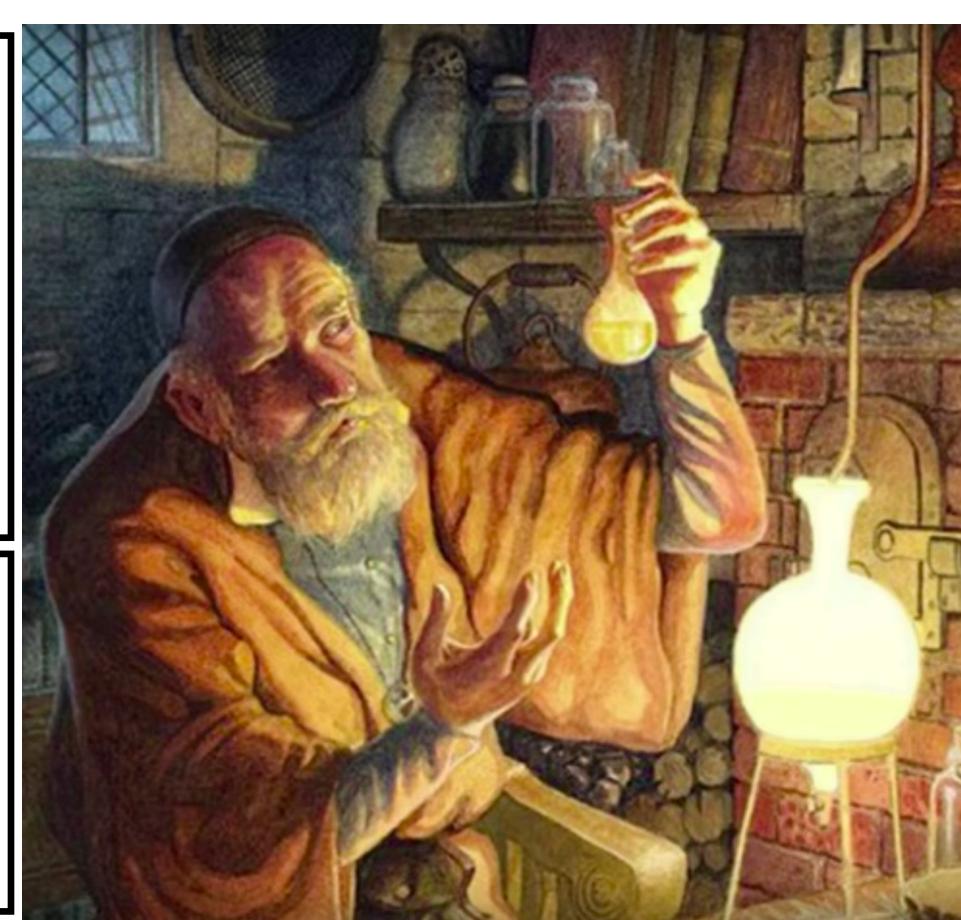
Understanding Deep Learning (Still) Requires Rethinking Generalization

By Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals

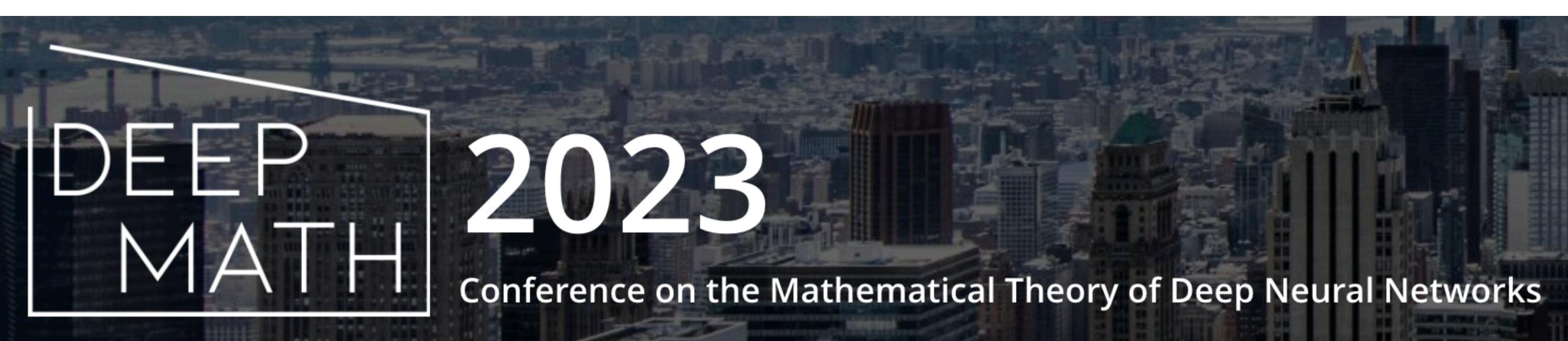
RE-

Moritz Hardt Google Brain mrtz@google.com

DOI:10.1145/3446776



Still, many theoreticians are on a quest to We take a glimpse on many topics of *Machine Learning Theory*.



Today

- "mathematically formalize how deep learning works."

Basic Framework

Framework

A machine learning task can be described by three things:

- The dataset $D = \{\mathbf{Z}_1, \dots, \mathbf{Z}_n\}$
- The hypothesis space $\mathscr{F} = \{f_{\theta} : \theta \in \Theta\}$
- $\ell(f, \mathbf{Z})$ The loss function

Goal. Find a nice parameter $\hat{\theta}$ from D, such that

- $\mathbb{E}[\ell(f_{\hat{\theta}}, \mathbf{z})] \approx \min_{\theta \in \Theta} \mathbb{E}[\ell(f_{\theta}, \mathbf{z})]$ $=:L(\theta)$

Algorithm

1 min — θ *n*

Reason. If we have many data, we have $L(\theta) \approx L(\hat{\theta})$ for any $\theta \in \Theta$

ML algorithms are *empirical risk minimization*, i.e., approximately solves

$$\sum_{i=1}^{n} \ell(f_{\theta}, \mathbf{z}_{i})$$

$$=:\hat{L}(\theta)$$

Decomposing the "test risk"

This can be broken down as:

 $L(\hat{\theta}) - \min$ $\theta \in \Theta$

- : Excess risk
- : Minimum error one could get from the hypothesis space. \bullet (approximation)

- We are interested in characterizing the **test risk**, of the learned $\hat{\theta}$, i.e.,
 - $L(\hat{\theta})$

$$\frac{L(\theta)}{\theta \in \Theta} + \min_{\theta \in \Theta} \frac{L(\theta)}{\theta \in \Theta}$$

Decomposing the "excess risk"

The excess risk can be decomposed as

$$L(\hat{\theta}) - L(\theta^*)$$

$$= L(\hat{\theta}) - \hat{L}(\hat{\theta}) + \hat{L}(\hat{\theta}) - \hat{L}(\theta^*) + \hat{L}(\theta^*) - L(\theta^*)$$
• How similar test risk is to training risk.
(Generalization)

Decomposing the "excess risk"

The excess risk can be decomposed as

$$\begin{split} L(\hat{\theta}) &- L(\theta^*) \\ = L(\hat{\theta}) - \hat{L}(\hat{\theta}) + \frac{\hat{L}(\hat{\theta}) - \hat{L}(\theta^*)}{\hat{L}(\theta^*)} + \hat{L}(\theta^*) - L(\theta^*) \end{split}$$

• : How similar test risk is to training risk. (Generalization)

The yellow term can be further decomposed as:

$$\hat{L}(\hat{\theta}) - \hat{L}(\theta^*) = \left(\hat{L}(\hat{\theta}) - \min_{\theta \in \Theta} \hat{L}(\theta)\right) + \min_{\theta \in \Theta} \hat{L}(\theta) - \hat{L}(\theta^*)$$

How well $\hat{\theta}$ solves ERM (**Optimization**)

<= zero, always

Three elements of Learning theory

From this perspective, *learning theory* is primarily about developing mathematical tools for three objects:

- **Approximation.**
- Generalization.
- **Optimization**.

 $\min L(\theta)$ $\theta \in \Theta$ $\hat{L}(\hat{\theta}) - L(\hat{\theta})$ $\hat{L}(\hat{\theta}) - \min \hat{L}(\theta)$

θEΘ

Three elements of Learning theory

From this perspective, *learning theory* is primarily about developing mathematical tools for three objects:

 $\min L(\theta)$ **Approximation.** $\theta \in \Theta$ $\hat{L}(\hat{\theta}) - L(\hat{\theta})$ Generalization. $\hat{L}(\hat{\theta}) - \min \hat{L}(\theta)$ **Optimization**. θCO

If Θ is very big. we expect approximation \downarrow

Three elements of Learning theory

From this perspective, *learning theory* is primarily about developing mathematical tools for three objects:

- **Approximation.**
- Generalization. $\hat{L}(\hat{\theta}) L(\hat{\theta})$
- **Optimization.** $\hat{L}(\hat{\theta}) \min \hat{L}(\theta)$

 $\min L(\theta)$ *A*∈€

A∈A

If Θ is very big. we expect approximation d_{Θ}

Reality. All \downarrow for D

•

Approximation

Approximation

Formal version.

For any ground-truth function $g(\mathbf{z})$,

there exists a nice parameter $\theta \in \Theta$ such that

e.g., human label

- $\mathbb{E}[\|f_{\theta}(\mathbf{z}) g(\mathbf{z})\|^2] < \epsilon$

(or alternatively, sup $||f_{\theta}(\mathbf{z}) - g(\mathbf{z})|| < \epsilon$) Z

Universal Approximation Theorem

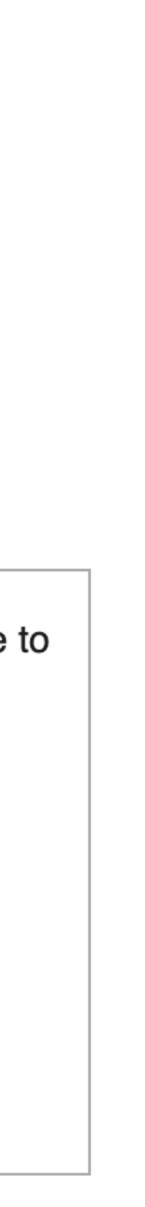
DL. Several old results state that two-layer neural network can approximate any function. (given sufficient width)

Universal approximation theorem – Let $C(X, \mathbb{R}^m)$ denote the set of continuous functions from a subset X of a Euclidean \mathbb{R}^n space to a Euclidean space \mathbb{R}^m . Let $\sigma \in C(\mathbb{R}, \mathbb{R})$. Note that $(\sigma \circ x)_i = \sigma(x_i)$, so $\sigma \circ x$ denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every $n \in \mathbb{N}$, $m \in \mathbb{N}$, compact $K \subseteq \mathbb{R}^n$, $f \in C(K, \mathbb{R}^m)$, $\varepsilon > 0$ there exist $k \in \mathbb{N}$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $C \in \mathbb{R}^{m \times k}$ such that

$$\sup_{x\in K}\|f(x)-g(x)\|<\varepsilon$$

where $g(x) = C \cdot (\sigma \circ (A \cdot x + b))$



UAT (depth ver.)

Recent works show that one can prove similar results for thin networks, given sufficient depths.

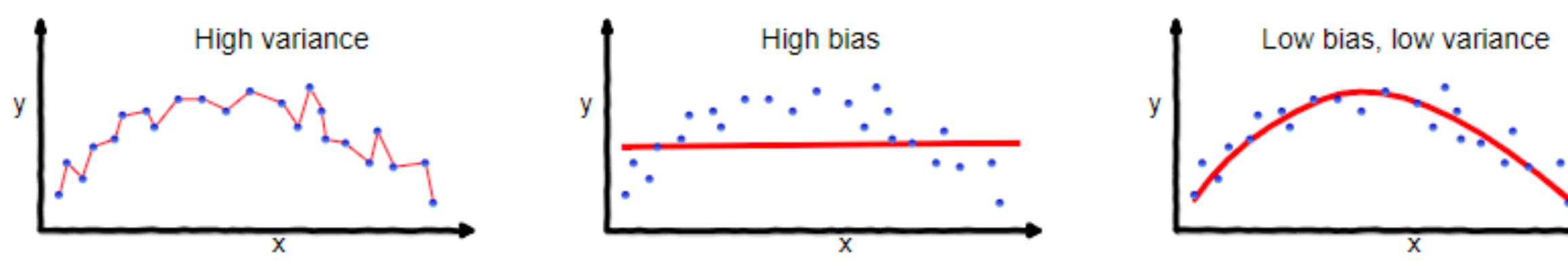
MINIMUM WIDTH FOR UNIVERSAL APPROXIMATION

Sejun Park[†] Chulhee Yun[‡] Jaeho Lee^{†*} Jinwoo Shin^{†*}

Reference	Function class	Activation ρ	Upper/lower bounds
Lu et al. (2017)	$L^1(\mathbb{R}^{d_x},\mathbb{R})$	RELU	$d_x + 1 \le w_{\min} \le d_x + 4$
	$L^1(\mathcal{K},\mathbb{R})$	RELU	$w_{\min} \geq d_x$
Hanin and Sellke (2017)	$C(\mathcal{K}, \mathbb{R}^{d_y})$	RELU	$d_x + 1 \le w_{\min} \le d_x + d_y$
Johnson (2019)	$C(\mathcal{K},\mathbb{R})$	uniformly conti. [†]	$w_{\min} \ge d_x + 1$
	$C(\mathcal{K}, \mathbb{R}^{d_y})$	conti. nonpoly [‡]	$w_{\min} \le d_x + d_y + 1$
Kidger and Lyons (2020)	$C(\mathcal{K}, \mathbb{R}^{d_y})$	nonaffine poly	$w_{\min} \le d_x + d_y + 2$
	$L^p(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$	RELU	$w_{\min} \le d_x + d_y + 1$
Ours (Theorem 1)	$L^p(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$	RELU	$w_{\min} = \max\{d_x + 1, d_y\}$
Ours (Theorem 2)	$C([0,1],\mathbb{R}^2)$	RELU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Ours (Theorem 3)	$C(\mathcal{K}, \mathbb{R}^{d_y})$	RELU+STEP	$w_{\min} = \max\{d_x + 1, d_y\}$
Ours (Theorem 4)	$L^p(\mathcal{K}, \mathbb{R}^{d_y})$	conti. nonpoly [‡]	$w_{\min} \le \max\{d_x + 2, d_y + 1\}$

[†] requires that ρ is uniformly approximated by a sequence of one-to-one functions. [‡] requires that ρ is continuously differentiable at some z with $\rho'(z) \neq 0$.

Classic idea. If there are too many parameters, the learned function should overfit.



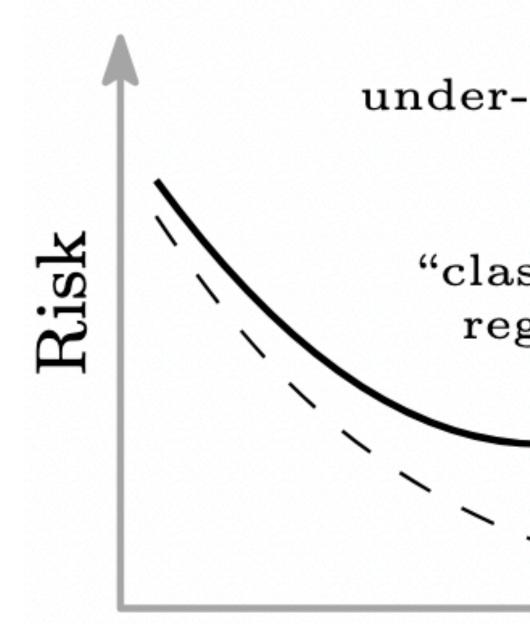
overfitting

underfitting

Good balance

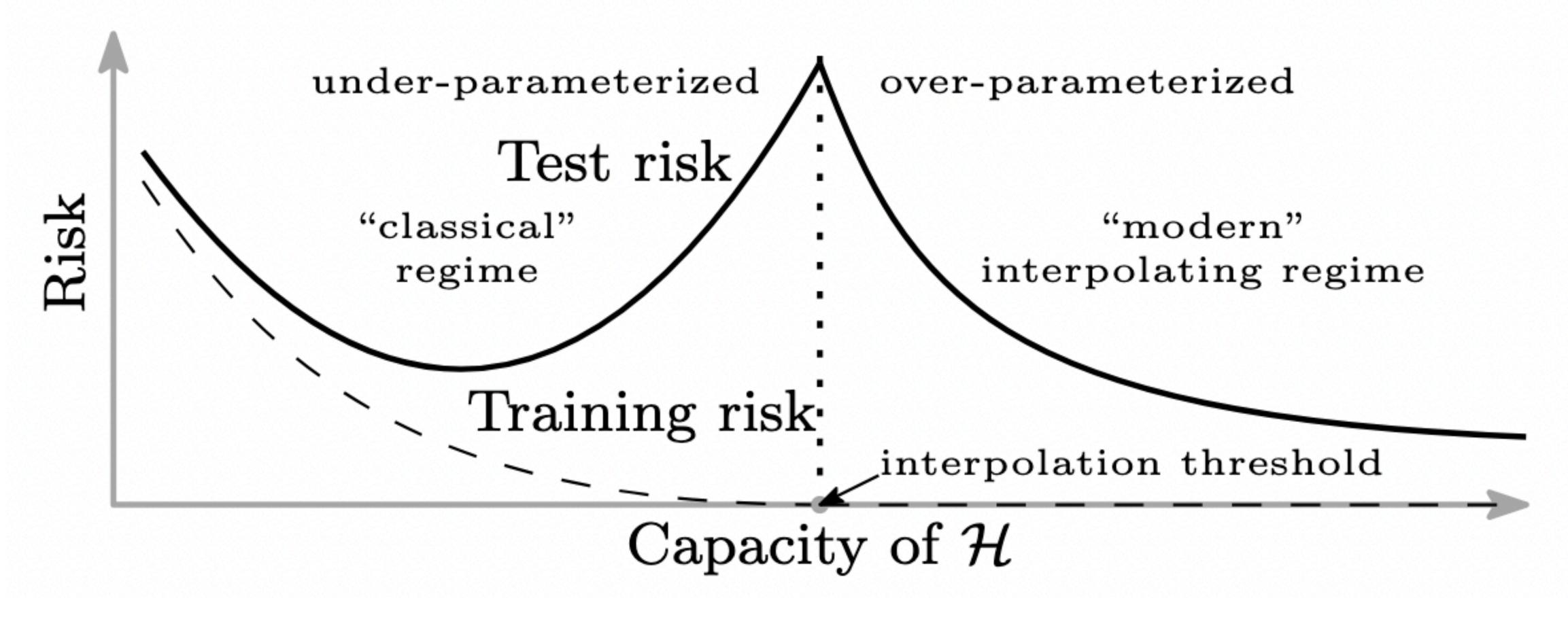
Classic results. With high probability, we have ...

$$\sup_{\theta} |L(\theta) - \hat{L}(\theta)| \le C \cdot \sqrt{\frac{\log|\Theta|}{n}}$$



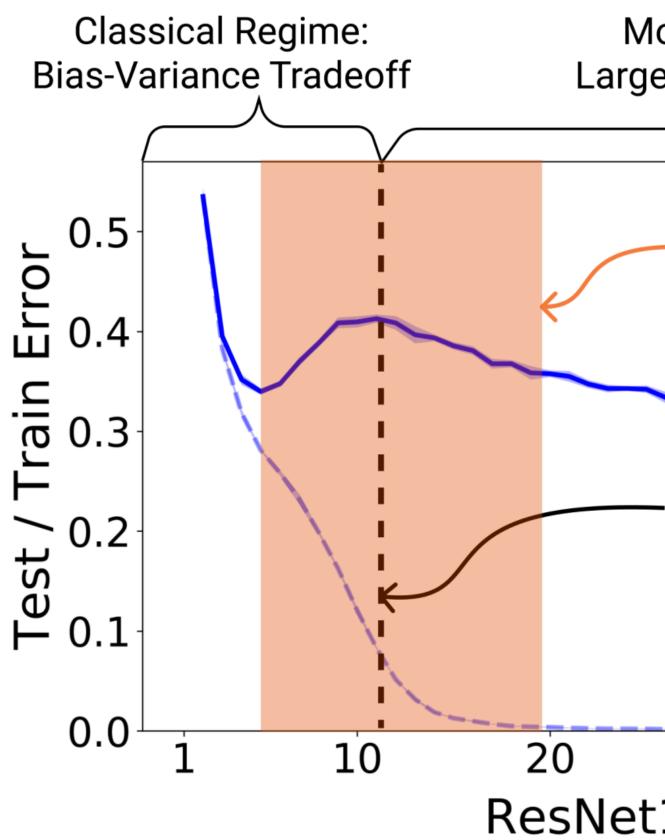
- under-parameterized Test risk "classical" regime Training risk
- Number of Parameters

DL. Generalization gets better with more parameters



Generalization

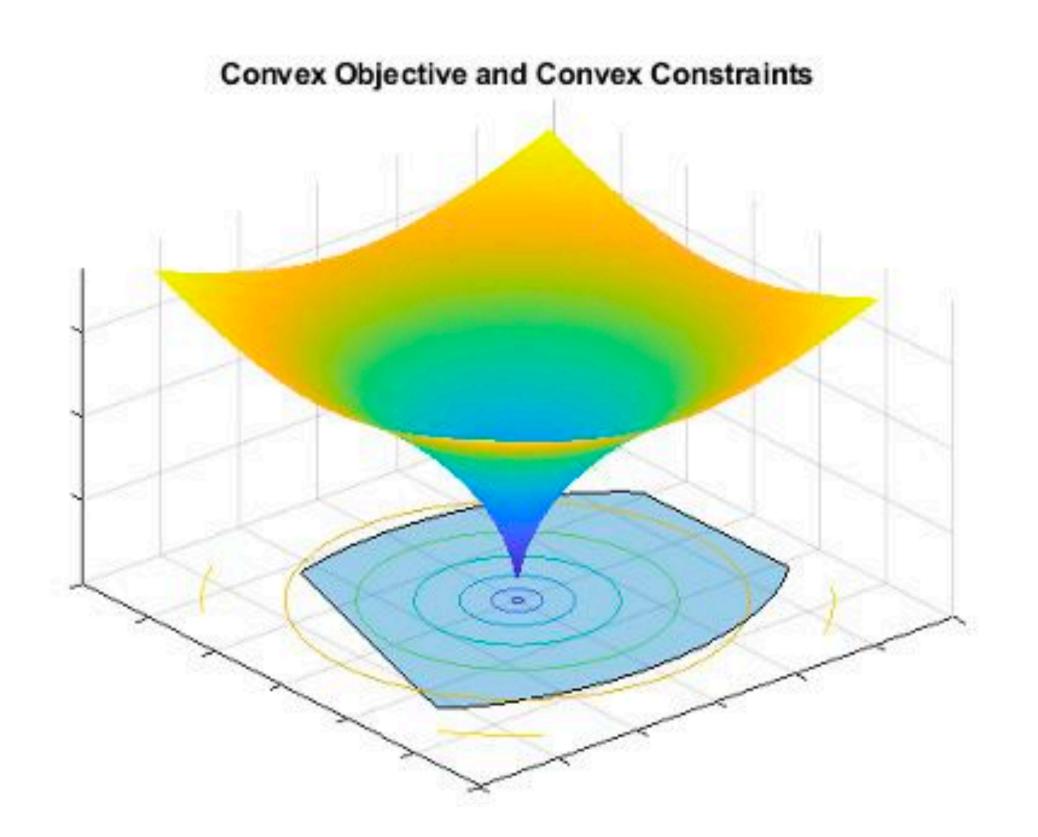
DL. Generalization gets better with more parameters? (still not fully understood!)

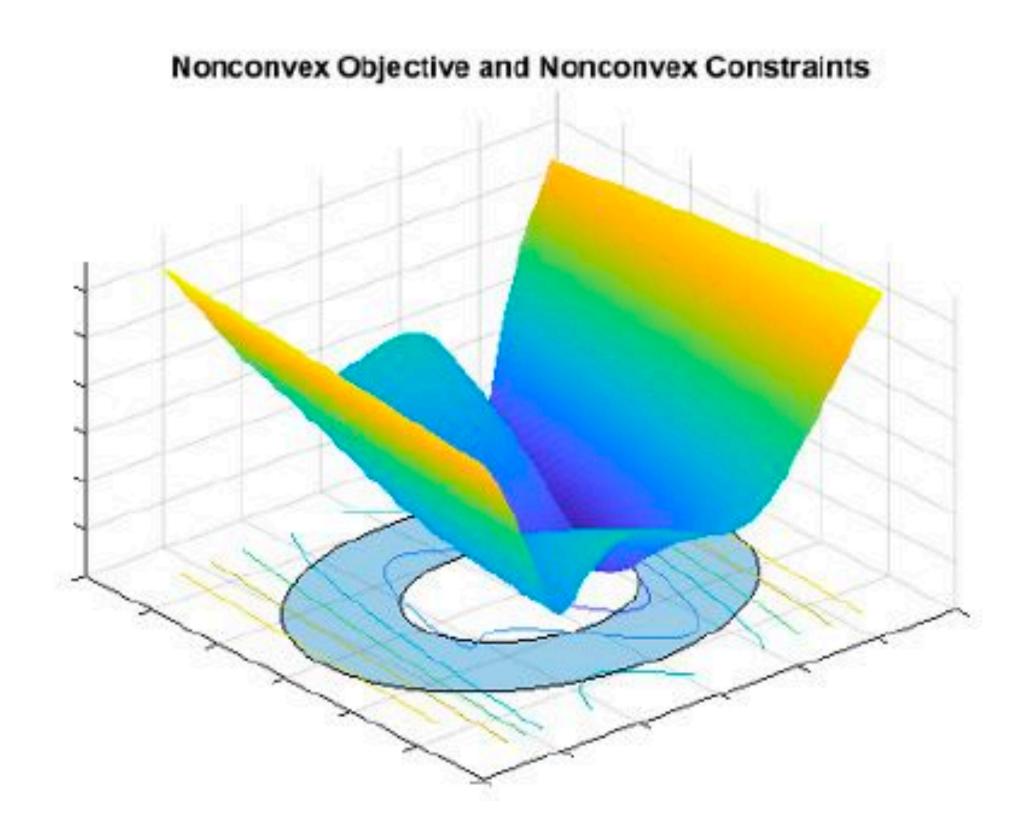


odern Regin er Model is E			
_ Critical Regime			Test Train
Interpolation Threshold			
30 18 width	40 n param	50 eter	60

Optimization

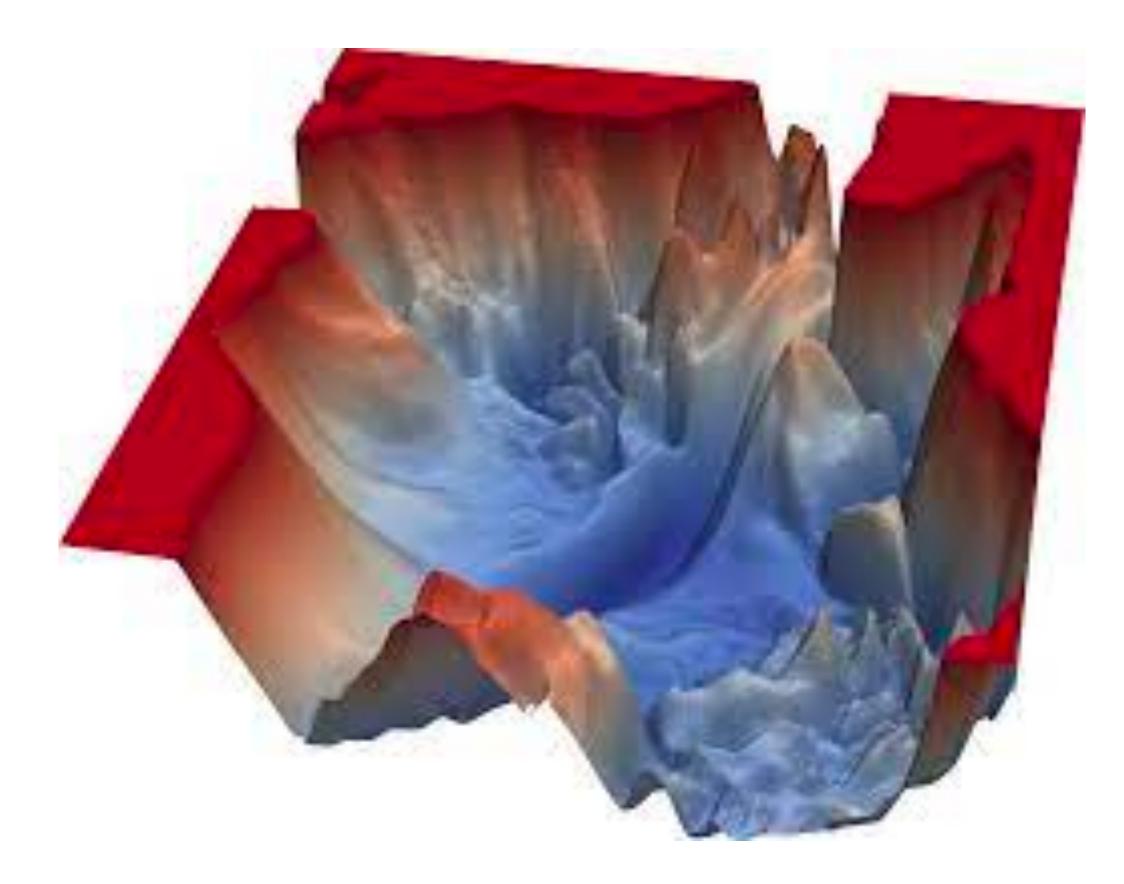
Classic idea. If convex, SGD converges well. If nonconvex, SGD may not really converge.





Optimization

DL. Highly nonconvex, yet converges well (especially for very big models)



Remarks

Concluding Remarks

- ML is still full of mysteries.
 - Especially because you need to handle data
 - Still needs some *alchemy*.
 - Part annoying, part fun.

• Waiting for new challengers to unravel the mystery...

(highly random and difficult to characterize; no Gaussian works!)

