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Hutchinson, “Has artificial intelligence become alchemy? ” Science, 2018
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« YOour own experience.

« NeurlPS 2017 test-of-time

award titled “ML has become == = // —
alchemy” by Ali Rahimi COMPUTER SCIENCE T
. The science magazine article -» 1108 artificial intelligence
become alchemy?

Machine learning needs more rigor, scientists argue



Point of Criticism

The (continued) lack of theoretical understanding on DL.
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Today

Still, many theoreticians are on a quest to
“mathematically formalize how deep learning works.”

We take a glimpse on many topics of Machine Learning Theory.

2023

Conference on the Mathematical Theory of Deep Neural Networks




Basic Framework



Framework

A machine learning task can be described by three things:

. The dataset D=\{z,...,z,j
. The hypothesis space F = {f,: 0 € O}

. The loss function £(f,z)

Goal. Find a nice parameter 0 from D, such that

=[£(fp2)]  minE[£(fy, Z)]

U=lQ),

=:L(0)



Algorithm

ML algorithms are empirical risk minimization, i.e., approximately solves

IIllIl—Zbﬂ(f@,Z)

::I:(Q)
Reason. If we have many data, we have

L(O) ~ L(é’) forany 0 € ®



Decomposing the “test risk”

We are interested in characterizing the test risk, of the learned 6, i.e.,
L(0)
This can be broken down as:

L(O) — min L(6) + min L(0)
0e® 0e®

. Excess risk

: Minimum error one could get from the hypothesis space.
(approximation)



Decomposing the “excess risk”

The excess risk can be decomposed as
L(0) — L(6%)
= L) — L(0) + L(O) — L(6%) + L(6%) — L(6%)

: How similar test risk is to training risk.
(Generalization)



Decomposing the “excess risk”

The excess risk can be decomposed as
L(0) — L(6%)
= L) — L(0) + L) — L(6*%) + L(0*) — L(6%)

The yellow term can be further decomposed as:

L(O) — L(6%) = [(L(0) — min L(0)) + min L(0) — L(6%)
0e® 0e®

How well @ solves ERM (Optimization) <= zero, always



Three elements of Learning theory

From this perspective, learning theory is primarily about
developing mathematical tools for three objects:

. Approximation. min L(6)

V=G,
. Generalization. lA,(é) — L(é’)
. Optimization. L(6) — min L(0)

0e®



Three elements of Learning theory

. Approximation. min L(6)

VISC,
. Generalization. lA,(é) — L(é’)
. Optimization. lA,(éA’) — min L(6)

0e®

If © is very big. we expect approximation =
generalization -
optimization &



Three elements of Learning theory

& Reality. All - for DL!



Approximation



Approximation

Formal version.
For any ground-truth function g(z),

there exists a nice parameter 8 € O such that

[fo(2) — g@)]|7] < €




Cybenko, “ Approximation by superpositions of a sigmoidal function” 1989

Universal Approximation Theorem

DL. Several old results state that
two-layer neural network can approximate any function.

Universal approximation theorem — Let C'(X, R™) denote the set of continuous functions from a subset X of a Euclidean R" space to
a Euclidean space R™. Let 0 € C'(R, R). Note that (o o x); = o(x; ), so o o & denotes ¢ applied to each component of x.

Then ¢ is not polynomial if and only if for every n € N, m € N, compact K C R", f € C(K,R™),e > Othere existk € N,
A e R¥™ b e RF, € € R™* such that

sup || f(z) — g(z)|| <e
reK

where g(z) = C - (co (A-z + b))



UAT (depth ver.)

Recent works show that one can prove similar results for thin networks,
given sufficient depths.

MINIMUM WIDTH FOR UNIVERSAL APPROXIMATION

Sejun Park” Chulhee Yun* Jaeho Lee™ Jinwoo Shin'*

Reference Function class Activation p Upper/lower bounds
T/md, < . <
Lu et al. (2017) LLQSC, ﬁg) ﬁgig ds + 1 o dz +4
Hanin and Sellke (2017) C(K, Rdy) RELU dz +1 < Wnpin < dg +d,,
Johnson (2019) C(K,R) uniformly conti.” Win > de + 1
C(K,R%) conti. nonpoly* Winin < dg +dy + 1
Kidger and Lyons (2020) C(K,R%) nonaffine poly Winin < dg + dy + 2
LP(R% R%) RELU Winin < dg +dy + 1
Ours (Theorem 1) LP(R% , R%) RELU Wmin = Max{d, + 1,d,}
Ours (Theorem 2) C([0,1],R?) RELU Wpnin = 3 > max{d, + 1,d,}
Ours (Theorem 3) C(K,R%) RELU+STEP Wmin = max{d; + 1, d,}
Ours (Theorem 4) LP(K,R%) conti. nonpoly* | wpin < max{d, + 2, d, + 1}

I requires that p is uniformly approximated by a sequence of one-to-one functions.
* requires that p is continuously differentiable at some z with p’(z) # 0.




Generalization




Generalization

Classic idea. If there are too many parameters,
the learned function should overfit.

High variance High bias Low bias, low varnance

overfitting underfitting Good balance



Generalization

Classic results. With high probability, we have ...

. log | ® |
sup | L(0) — L(O) | < C -y [ ——
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Generalization

DL. Generalization gets better with more parameters

under-parameterized /\ over-parameterized
Test risk
=y -
N \ “classical” . “modern”
E \ regime ' interpolating regime
N
N
N

-~ [Training risk:
B . _interpolation threshold

\



Generalization

DL. Generalization gets better with more parameters?

Classical Regime:
Bias-Variance Tradeoff

Modern Regime:
Larger Model is Better
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Optimization



Optimization

Classic idea. If convex, SGD converges well.
If nonconvex, SGD may not really converge.

Convex Objective and Convex Constraints Nonconvex Objective and Nonconvex Constraints




Optimization

DL. Highly nonconvex, yet converges well
(especially for very big models)







Concluding Remarks

« ML is still full of mysteries.

» Especially because you need to handle data

 Still needs some alchemy.

- Part annoying, part fun.

- Waiting for new challengers to unravel the mystery...






