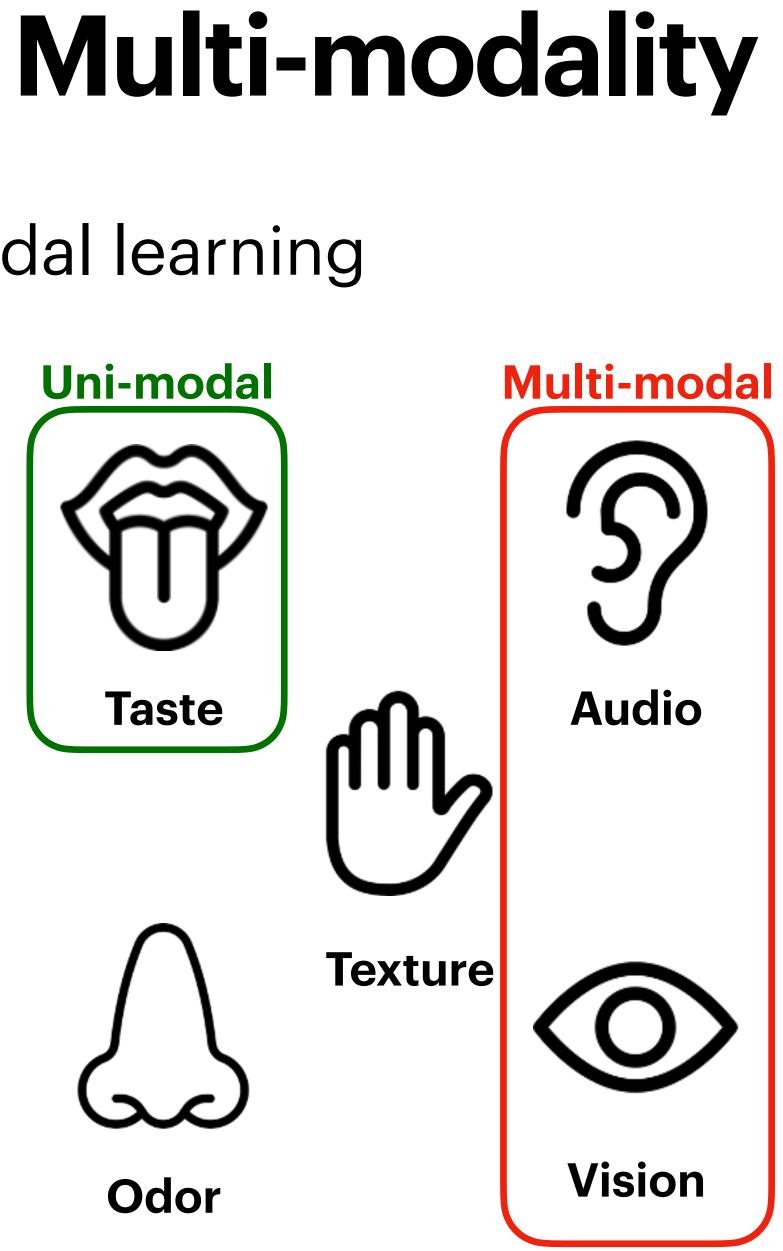
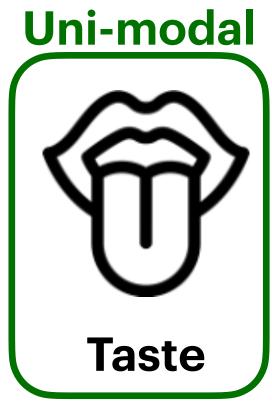
## **23. Multi-modal Learning** EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee



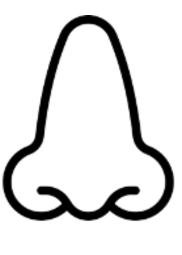


Modalities in multi-modal learning





#### **Social Network**





조 한구다 말

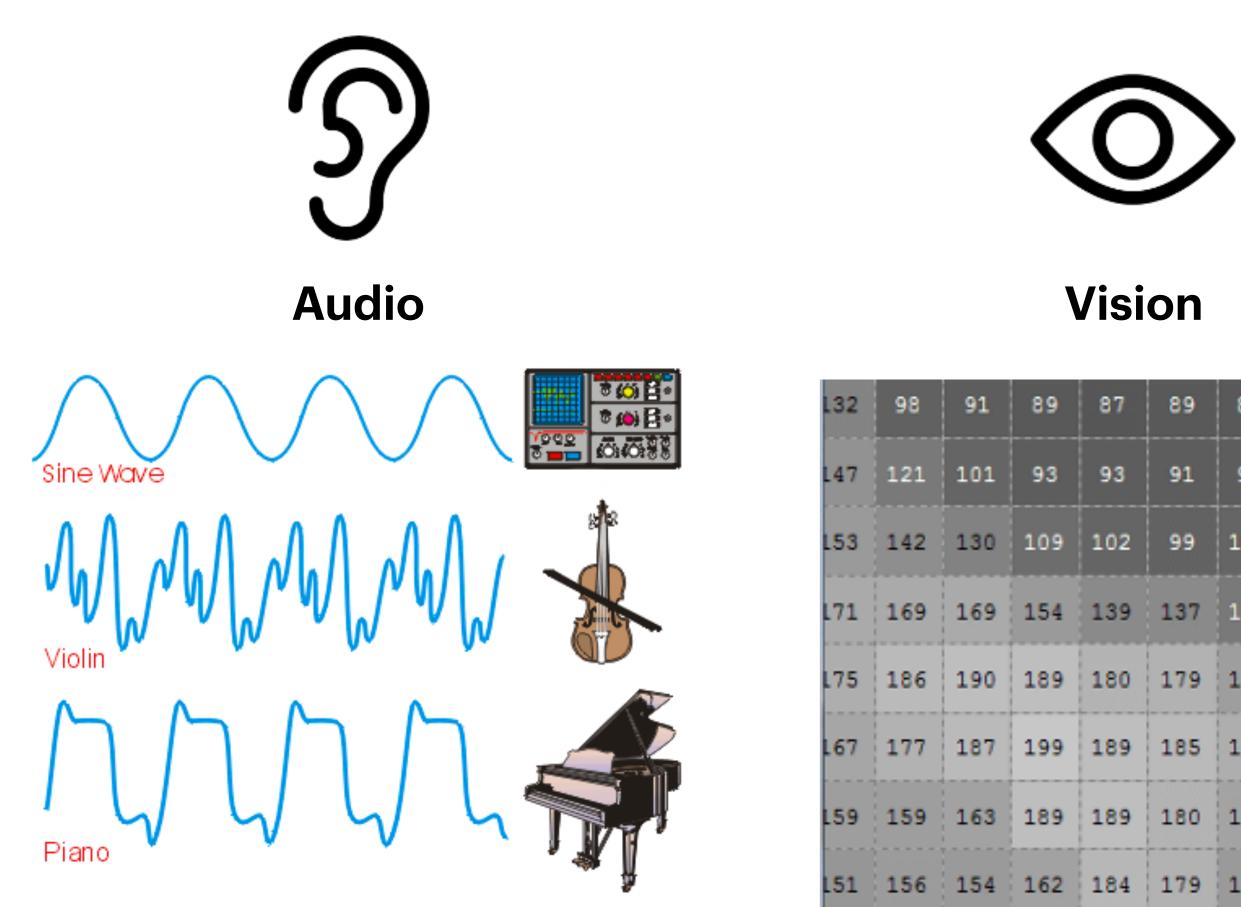
Text



Force

## Challenges

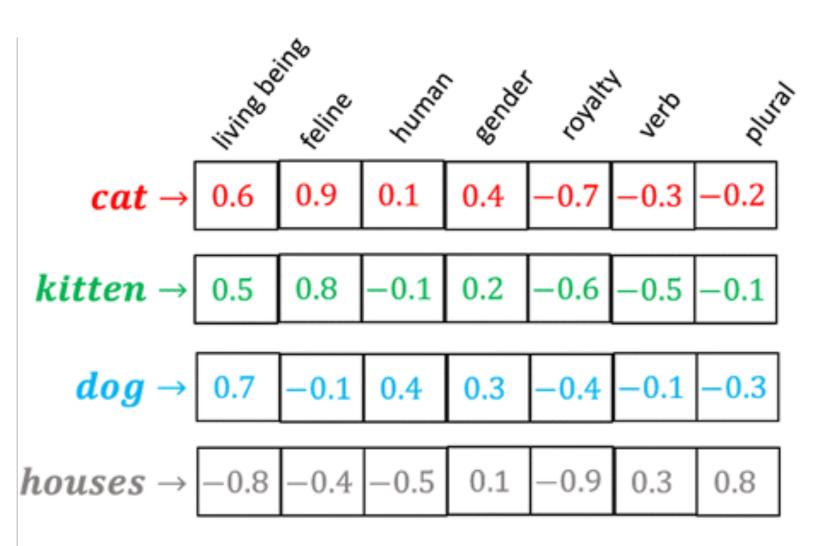
### **1. Representation.** Data in each domain have different representations



| 87  | 89                                    | 89                                                                           | 101                                                | 125                                                                  | 1                                                                                      |
|-----|---------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 93  | 91                                    | 93                                                                           | 112                                                | 134                                                                  | 1                                                                                      |
| 102 | 99                                    | 101                                                                          | 121                                                | 138                                                                  | 1                                                                                      |
| 139 | 137                                   | 119                                                                          | 123                                                | 142                                                                  | 1                                                                                      |
| 180 | 179                                   | 158                                                                          | 133                                                | 144                                                                  | 1                                                                                      |
| 189 | 185                                   | 175                                                                          | 150                                                | 146                                                                  | 1                                                                                      |
| 189 | 180                                   | 164                                                                          | 153                                                | 148                                                                  | 1                                                                                      |
| 184 | 179                                   | 153                                                                          | 145                                                | 145                                                                  | 1                                                                                      |
|     | 93<br>102<br>139<br>180<br>189<br>189 | 93   91     102   99     139   137     180   179     189   185     189   180 | 93919310299101139137119180179158189185175189180164 | 93919311210299101121139137119123180179158133189185175150189180164153 | 93919311213410299101121138139137119123142180179158133144189185175150146189180164153148 |

한국어 조 선말

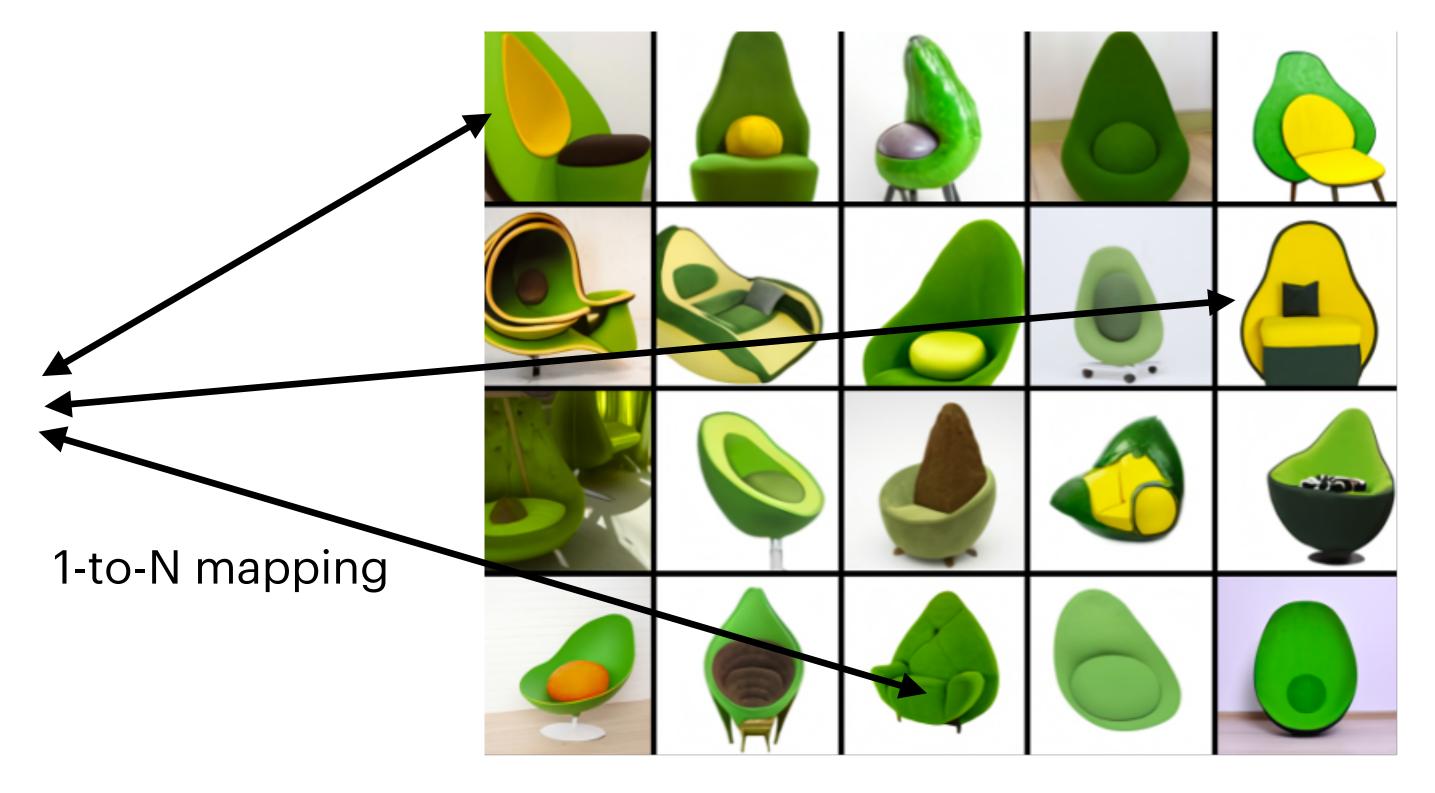
Text



## Challenges

# **2. Correspondence.** Heterogeneous feature spaces with potentially limited correspondence

"An armchair in the shape of avocado"

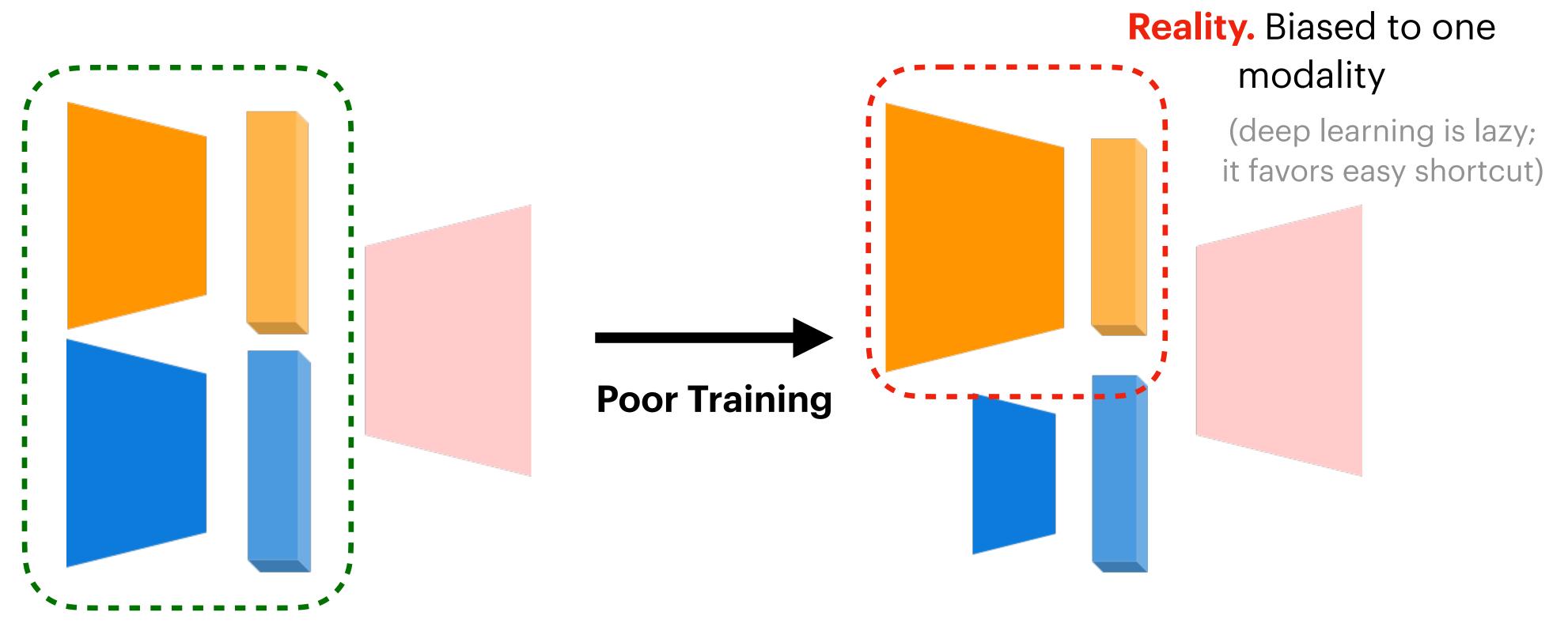


**Text Space** 

Image Space

## Challenges

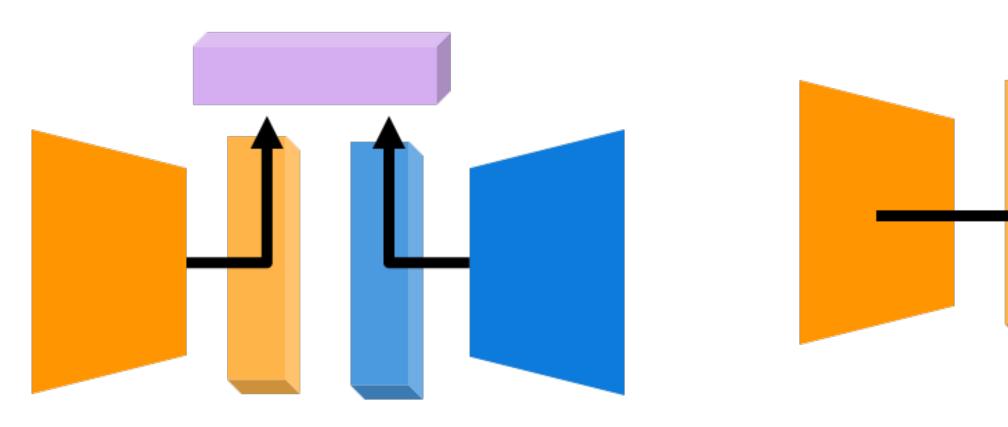
### 3. Bias. Imbalance between heterogeneous feature spaces



**Hope.** Fully utilize multiple modalities

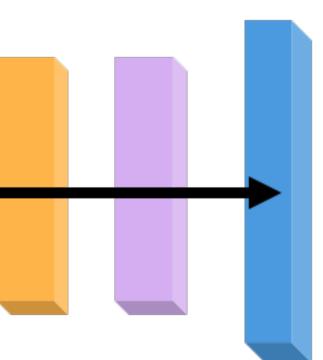
Despite the challenges, we expect much fruitful outcomes

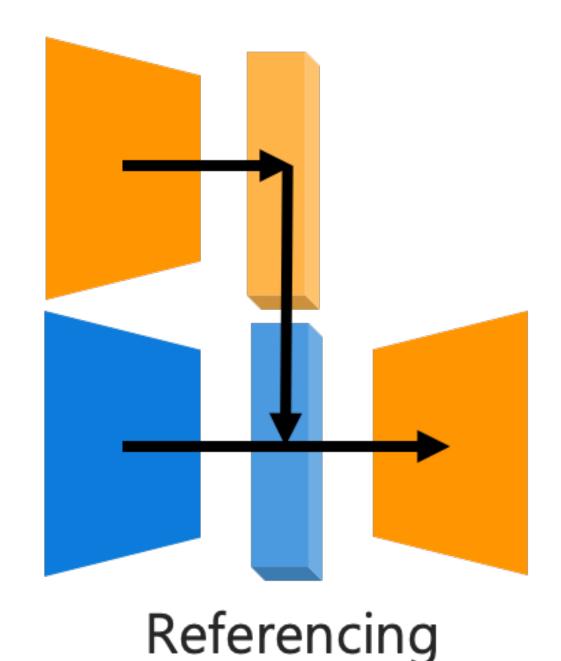
We look at the example of CLIP, which handles vision + text



Matching





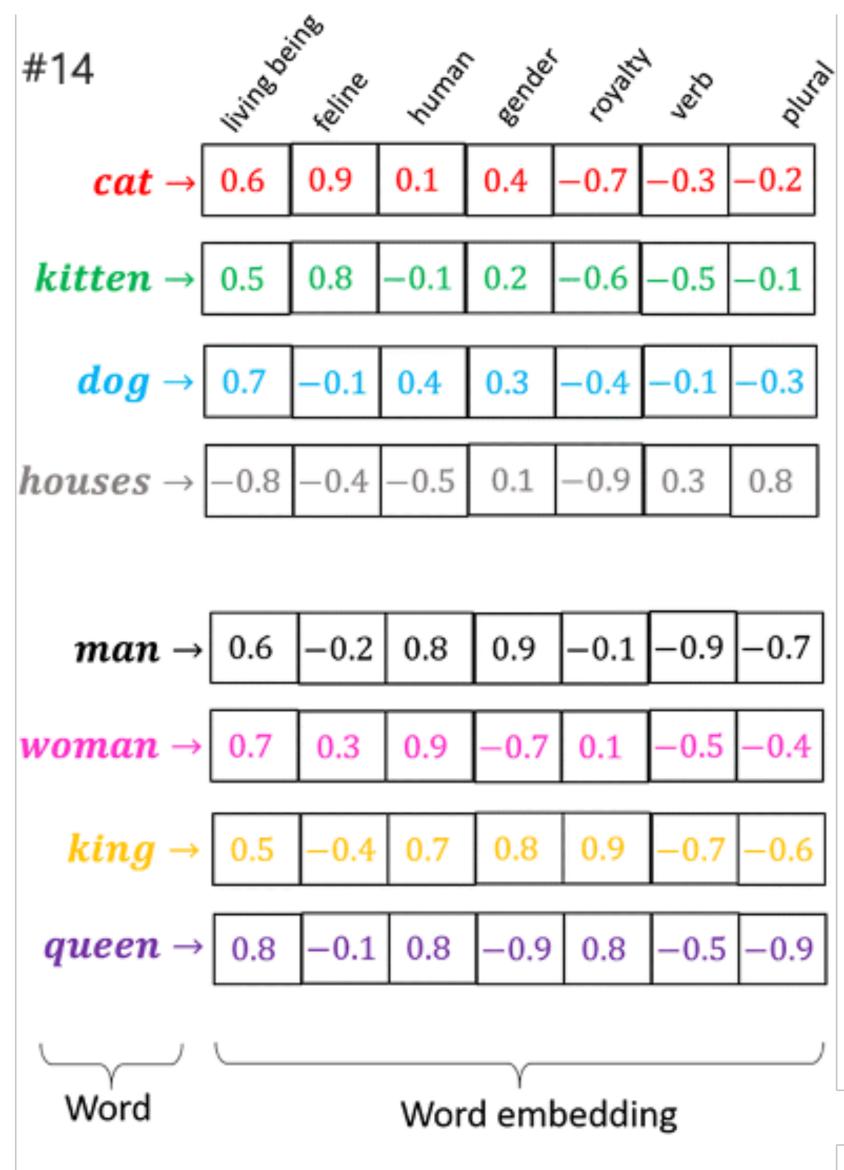


Translating

# Vision & Language

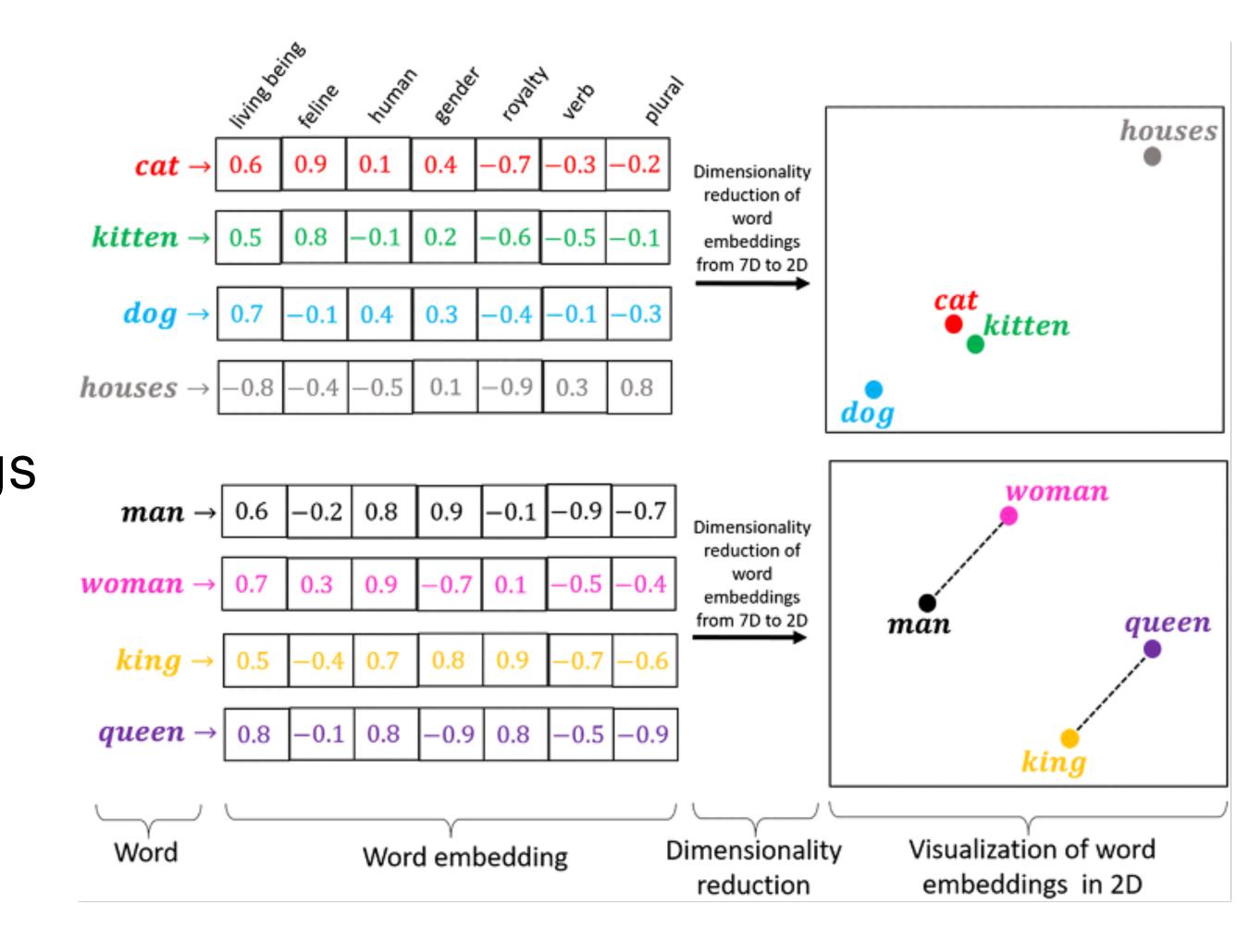
## **Text Embedding**

- Map each word / token to a continuous Euclidean space.
  - Discrete characters are difficult to use.

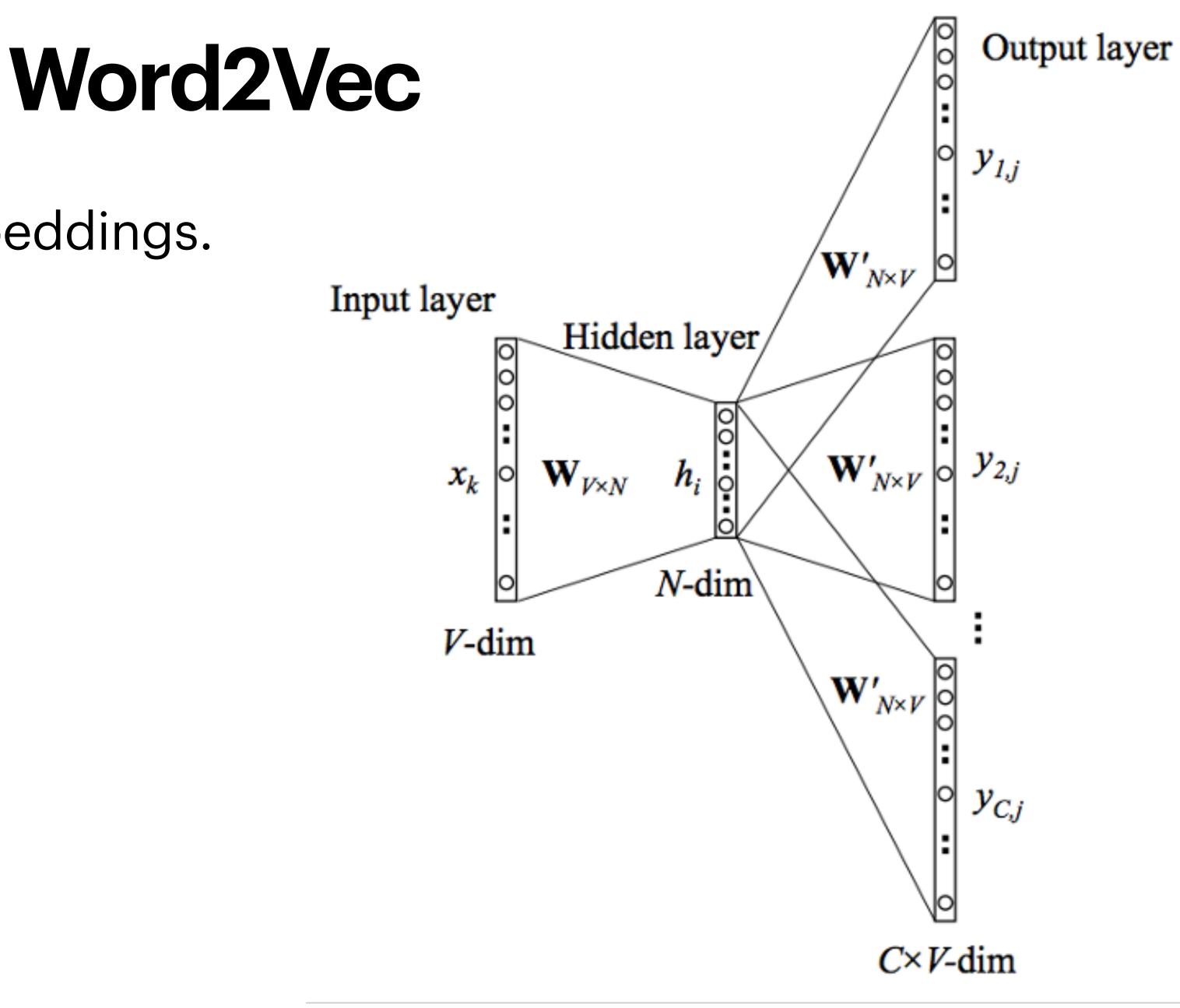


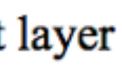
## Text Embedding

- Map each word / token to a continuous Euclidean space.
  - Discrete characters are difficult to use.
- Surprisingly, learned embeddings are rich in semantics (e.g., cat & kitten)



- One way to train text embeddings.
  - A skip-gram model





### Word2Vec

- One way to train text embeddings.
  - A skip-gram model
- Idea. Predict the surrounding words from the center word.

| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (the, quick)<br>(the, brown)                                     |
|----------------------------------------------------------------|------------------------------------------------------------------|
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (quick, the)<br>(quick, brown)<br>(quick, fox)                   |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (brown, the)<br>(brown, quick)<br>(brown, fox)<br>(brown, jumps) |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (fox, quick)<br>(fox, brown)<br>(fox, jumps)<br>(fox, over)      |

| The | quick | brown | fox | jumps | over | the | lazy | dog. | $\rightarrow$ | (the, quick)<br>(the, brown)                                |
|-----|-------|-------|-----|-------|------|-----|------|------|---------------|-------------------------------------------------------------|
| The | quick | brown | fox | jumps | over | the | lazy | dog. | $\rightarrow$ | (quick, the)<br>(quick, brown)                              |
| The | quick | brown | fox | jumps | over | the | lazy | dog. | <b>—</b>      | (quick, fox)<br>(brown, the)                                |
|     |       |       |     |       |      |     |      |      |               | (brown, quick)<br>(brown, fox)<br>(brown, jumps)            |
| The | quick | brown | fox | jumps | over | the | lazy | dog. | <b>—</b>      | (fox, quick)<br>(fox, brown)<br>(fox, jumps)<br>(fox, over) |

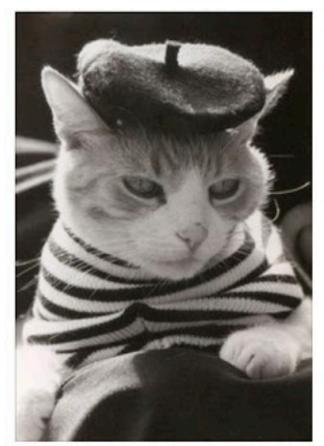
### Word2Vec

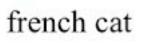
- One way to train text embeddings.
  - A skip-gram model
- Idea. Predict the surrounding words from the center word.

• Question. Can we use similar idea to train the joint embedding of image and text data?

### CLIP

- Trains such joint embedding using the transformer, and a lot of data
- Scale matters. Not the first attempt; but the first to use very large dataset
  - Used 400 million image-text pairs.







french cat



How to tell if your feline is french. He wears a b...

Radford et al., "Learning Transferable Visual Models From Natural Language Supervision," ICML 2021



イケメン猫モデル 「トキ・ナンタケッ ト」がかっこいい-NAVER まとめ



Hilarious pics of funny cats! funnycatsgif.com

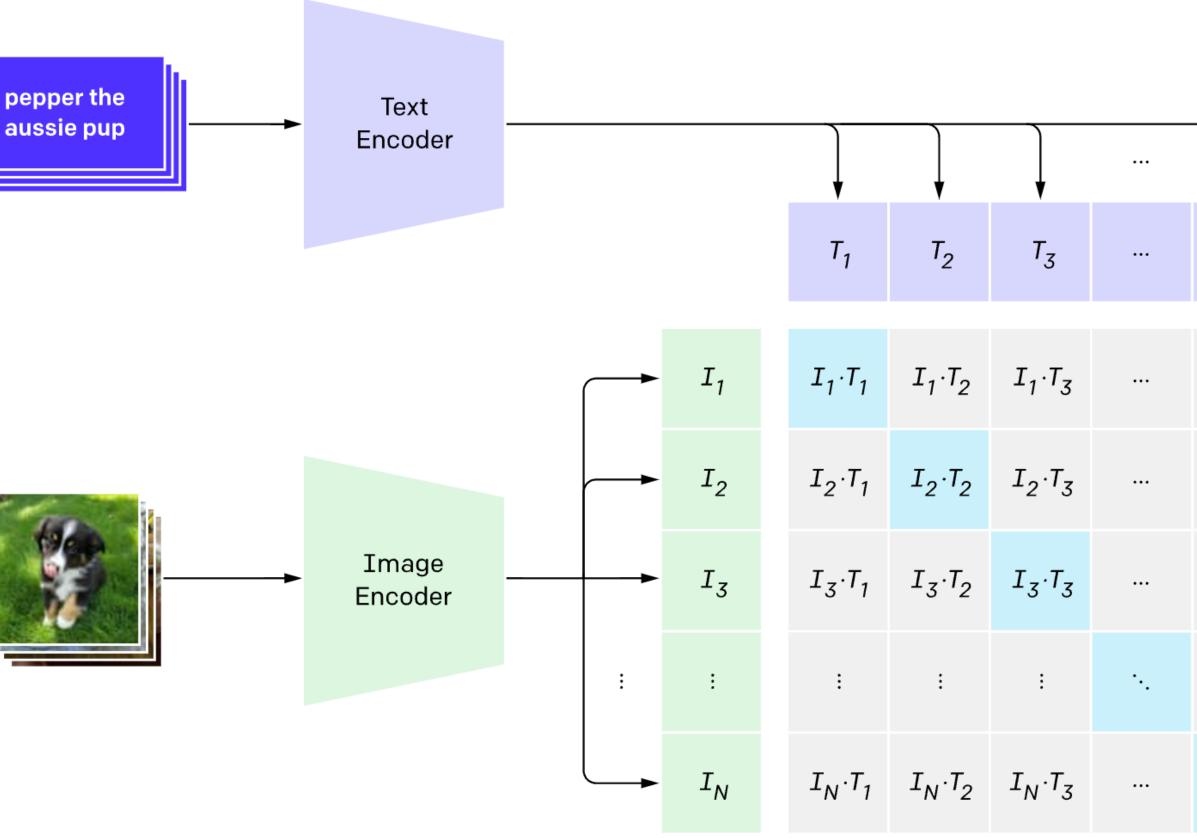
Radford et al., "Learning Transferable Visual Models From Natural Language Supervision," ICML 2021

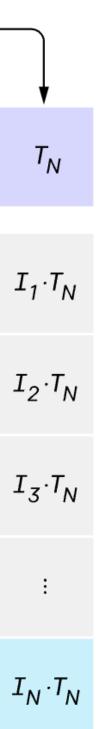
# Algorithm. Contrastive pre-training

- Draws *N* image-text pairs as a batch.
- **Increase** the similarity between  $(I_i, T_i)$
- **Decrease** the similarity between  $(I_i, T_j)$









|                | T <sub>1</sub>                 | T <sub>2</sub>                 | T <sub>3</sub>                 |    | T <sub>N</sub>                 |
|----------------|--------------------------------|--------------------------------|--------------------------------|----|--------------------------------|
| I <sub>1</sub> | $I_1 \cdot T_1$                | I <sub>1</sub> .7₂             | $I_1 \cdot T_3$                |    | I <sub>1</sub> ·T <sub>N</sub> |
| I <sub>2</sub> | $I_2 \cdot T_1$                | I <sub>2</sub> .√72            | $I_2 \cdot T_3$                |    | I₂·T <sub>N</sub>              |
| I <sub>3</sub> | $I_3 \cdot T_1$                | I <sub>3</sub> .7 <sub>2</sub> | I <sub>3</sub> ·T <sub>3</sub> |    | I <sub>3</sub> ·T <sub>N</sub> |
| :              | :                              | :                              | ÷                              | •. | ÷                              |
| I <sub>N</sub> | I <sub>N</sub> ∙T <sub>1</sub> | I <sub>N</sub> ∙T <sub>2</sub> | I <sub>N</sub> ∙T <sub>3</sub> |    | I <sub>N</sub> ·T <sub>N</sub> |

Radford et al., "Learning Transferable Visual Models From Natural Language Supervision," ICML 2021

### CLIP

### Concretely...

Minimize the mixture of two losses.

Image-to-text loss

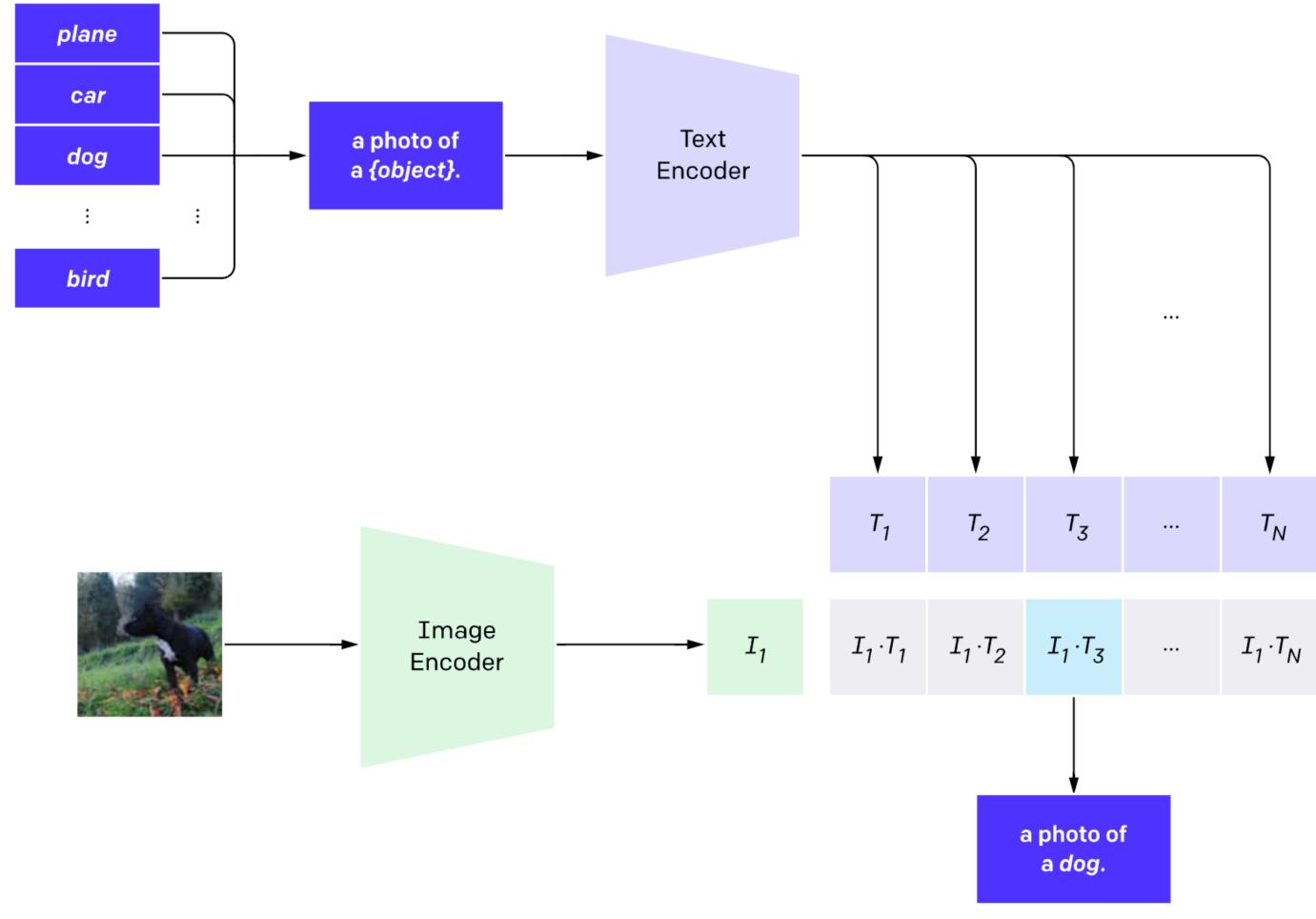
$$L_{i \to t} = -\sum_{i=1}^{N} \log \frac{\exp(I_i \cdot T_i/\tau)}{\sum_j \exp(I_i \cdot T_j/\tau)}$$

Text-to-image loss

$$L_{i \to t} = -\sum_{j=1}^{N} \log \frac{\exp(I_j \cdot T_j/\tau)}{\sum_i \exp(I_i \cdot T_j/\tau)}$$

### **Use cases**

Given a good joint embedding, one can use it for classification.

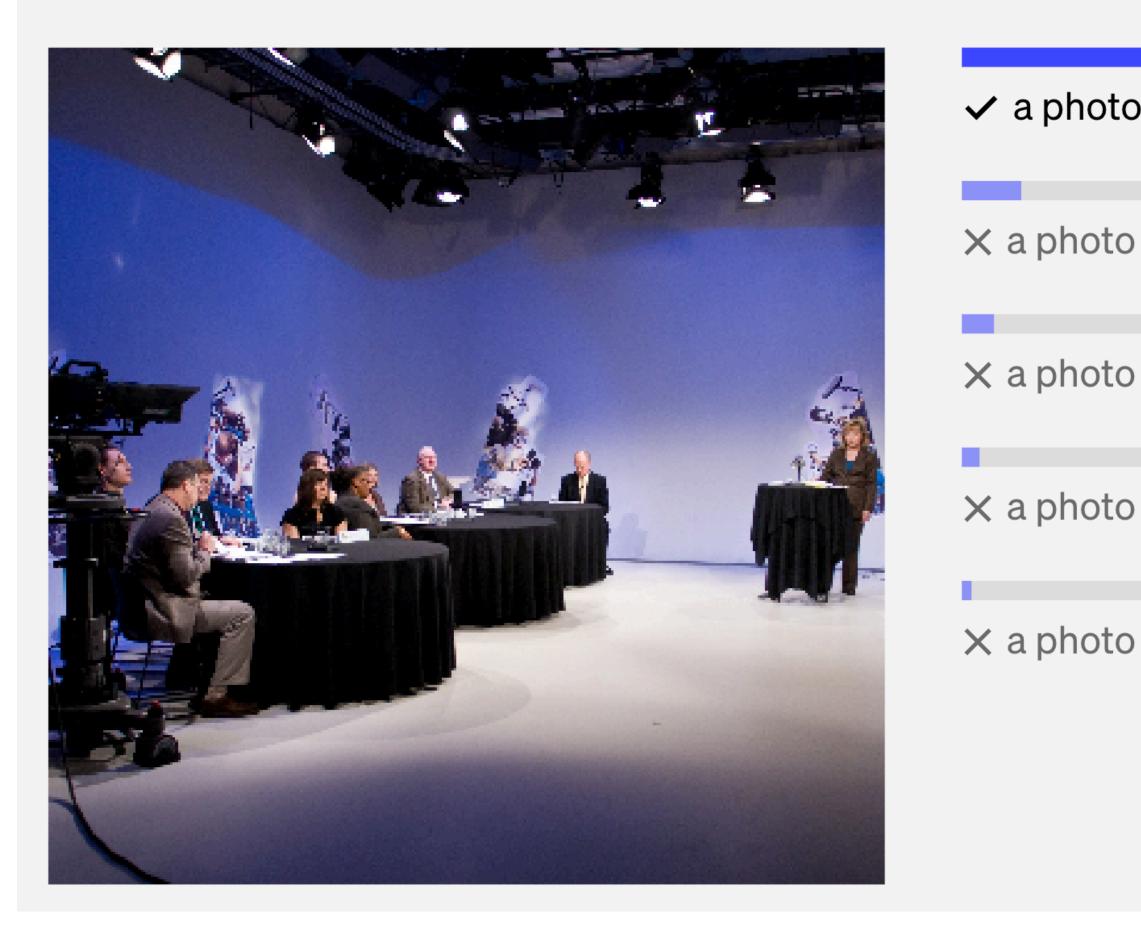




• Enables an effective *zero-shot classification*.

#### **SUN397**

television studio (90.2%) Ranked 1 out of 397 labels



✓ a photo of a television studio.

X a photo of a **podium indoor**.

X a photo of a **conference room**.

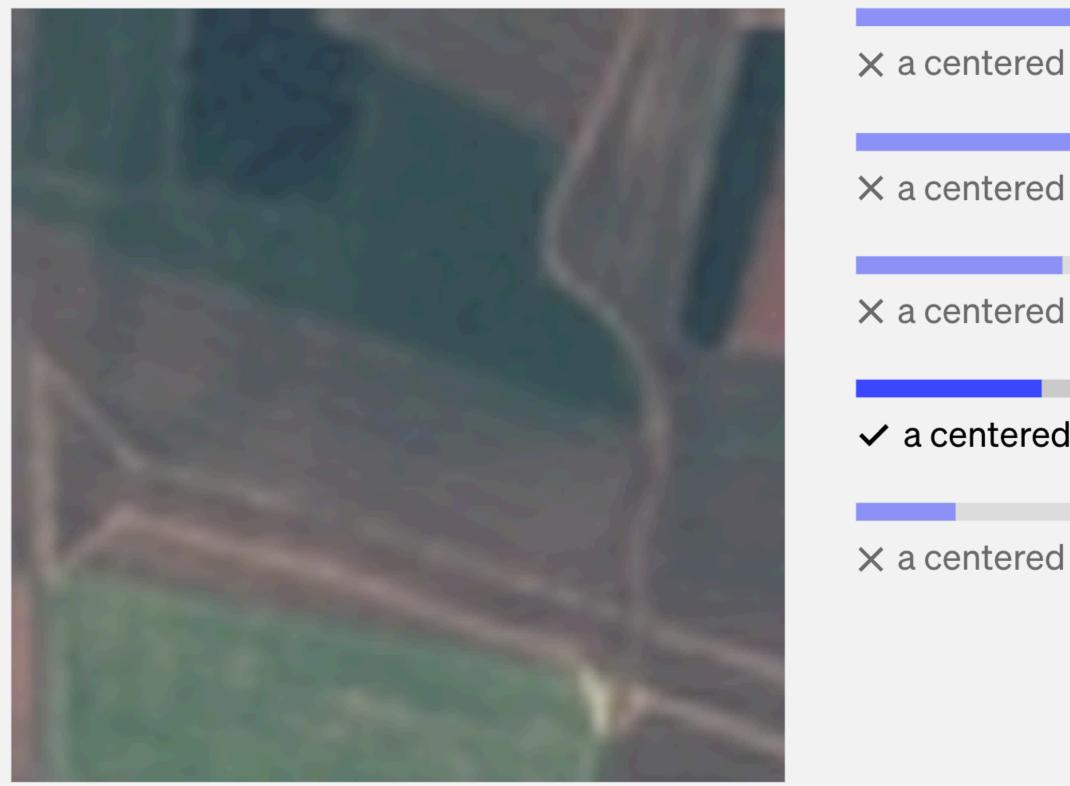
× a photo of a **lecture room**.

X a photo of a **control room**.

- Enables an effective *zero-shot classification*.
  - Especially when we have good prompts.

#### EuroSAT

annual crop land (46.5%) Ranked 4 out of 10 labels



# assification.

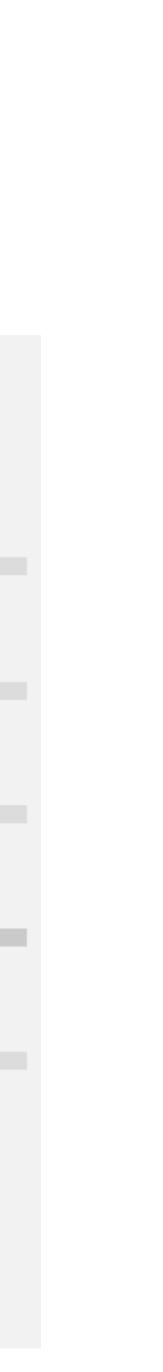
× a centered satellite photo of permanent crop land.

X a centered satellite photo of **pasture land**.

X a centered satellite photo of **highway or road**.

✓ a centered satellite photo of annual crop land.

× a centered satellite photo of **brushland or shrubland**.



### CLIP + LLMs = Captioning Models



A politician receives a gift from A collage of different colored ties politician. A collage of different colored ties on a white background.



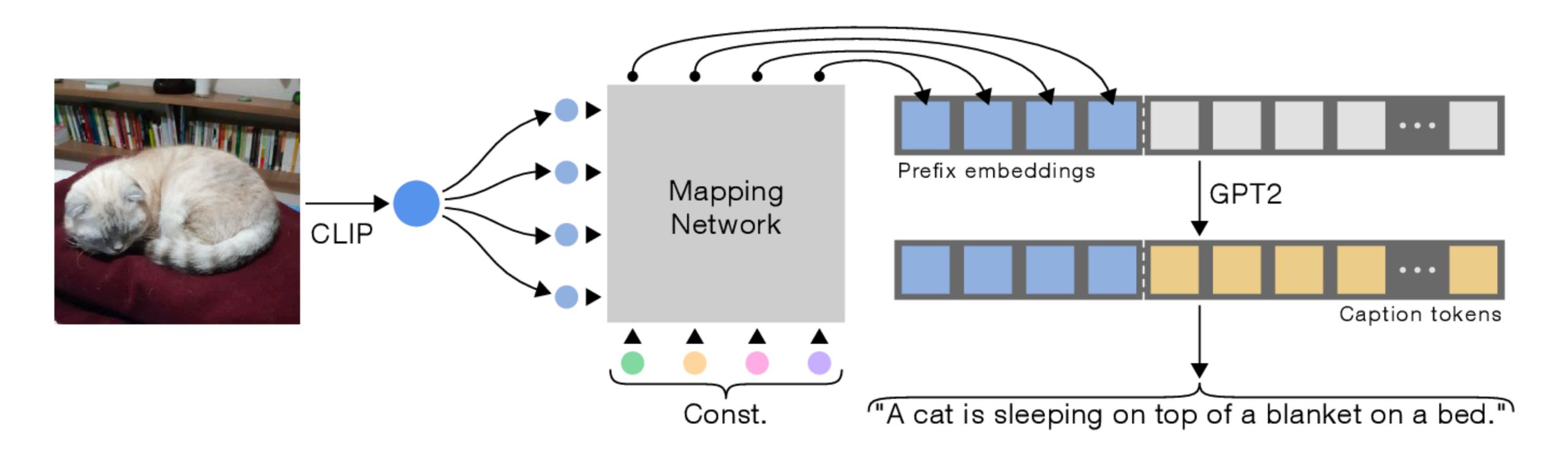
Silhouette of a woman practicing Aerial view of a road in autumn. yoga on the beach at sunset.

Mokady et al., "ClipCap: CLIP Prefix for Image Captioning," 2021





CLIP + LLMs = Captioning Models



Mokady et al., "ClipCap: CLIP Prefix for Image Captioning," 2021

### CLIP + GAN = Text-based Image Generation

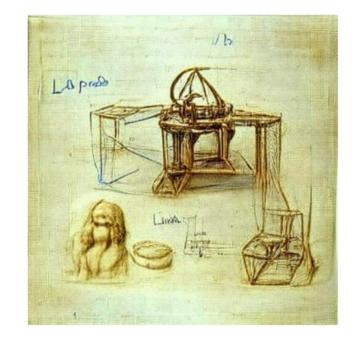


(a) Oil painting of a candy dish of glass candies, mints, and other assorted sweets



(d) A beautiful painting of a building in a serene landscape





(e) sketch of a 3D printer by Leonardo da Vinci



(b) A colored pencil drawing of a waterfall



(c) A fantasy painting of a city in a deep valley by Ivan Aivazovsky



(f) an autogyro flying car, trending on artstation

### CLIP + GAN = Text-based Image Generation and editing

#### Instruction

#### "Green"

#### "Red Bus"



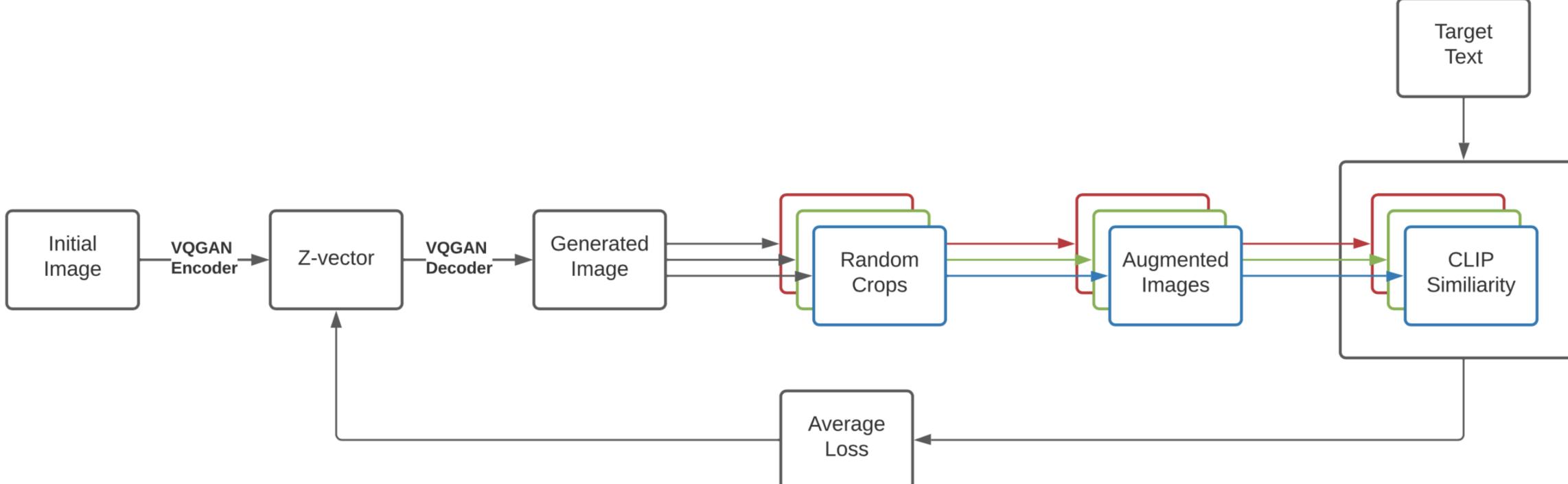
Original

VQGAN-CLIP

Crowson et al., "VQGAN-CLIP: Open domain image generation and editing with natural language guidance," 2022

### **Other use cases**

CLIP + GAN = Text-based Image Generation and editing



#### • CLIP + GAN + Audio data

#### Text/Audio to Image Generation with VQGAN-CLIP



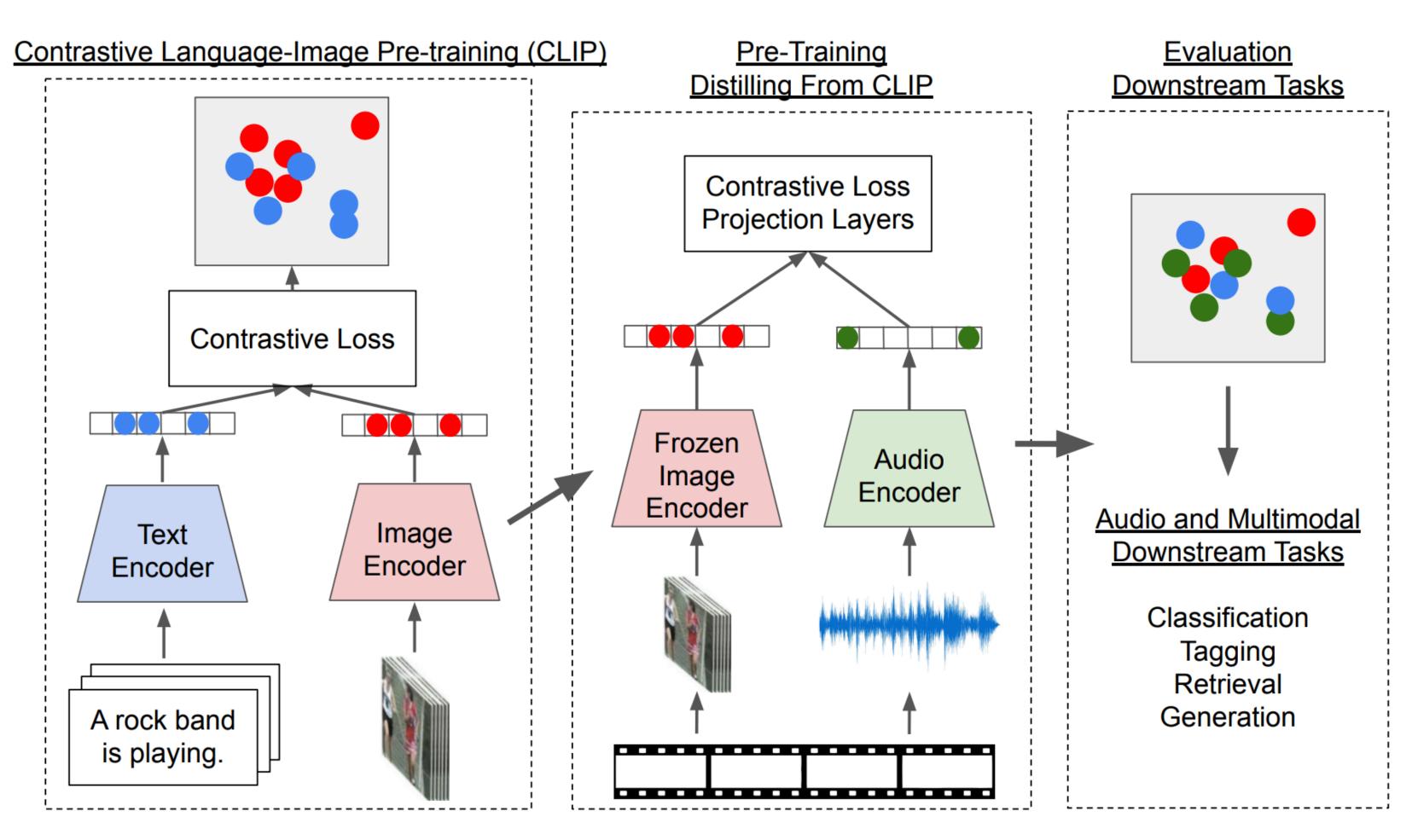
street music

dog bark

children playing

gun shot

### CLIP + GAN + Audio data



### **Other use cases**

Xu et al., "Show, attend and tell: Neural image caption generation with visual attention," ICML 2015

## **Even older examples...**

### Cross-modal reasoning



A woman is throwing a <u>frisbee</u> in a park.





A little girl sitting on a bed with a teddy bear.

in the water.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A group of people sitting on a boat

A giraffe standing in a forest with trees in the background.

Marin et al., "Recipe 1M+: A dataset for learning cross-modal embeddings for cooking recipes and food images," TPAMI 2019

### **Even older examples...**

#### Food recipe retrieval

#### Query Image



#### True ingrs.

whole milk half - and - half cr white sugar lemon extract ground cinnamon frozen blueberries vanilla wafers ice cubes



butter garlic cloves all - purpose flour kosher salt milk chicken broth mozzarella cheese parmesan cheese onion

#### Retrieved ingrs. Retrieved Image

berries strawberry yogurt banana milk white sugar

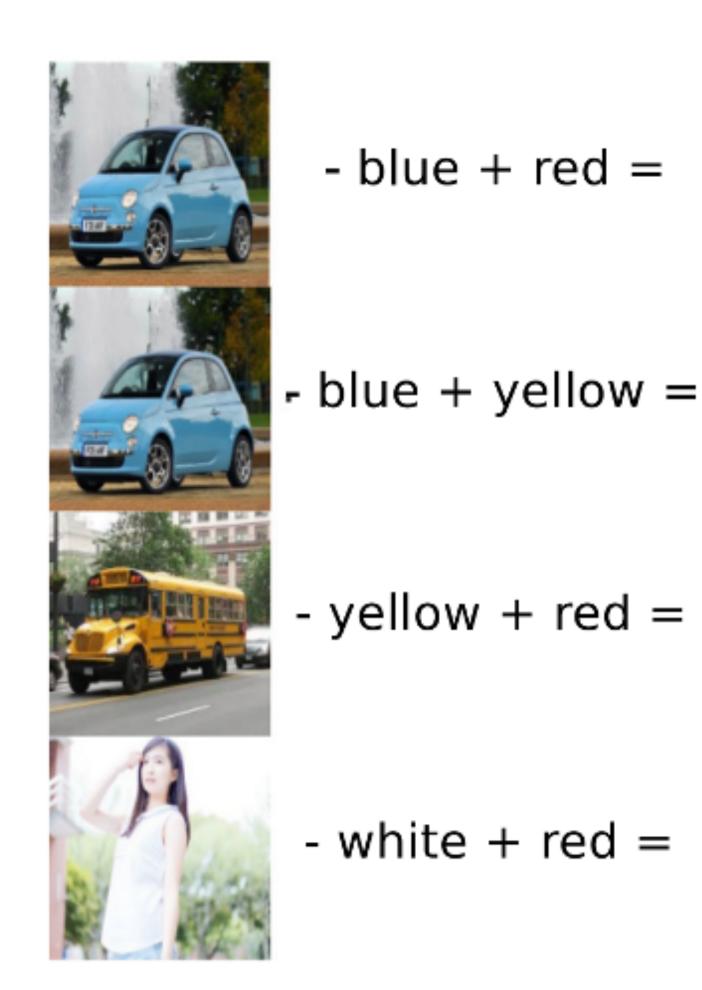
1 box any pasta you ground beef 1 envelope taco seas water 1/2 packages cream c cheese





## **Even older examples...**

• Image retrieval, with analogies



Kiros et al., "Unifying visual-semantic embeddings with multimodal neural language models," ICML 2014

#### Nearest images



