
21. Transformers & LLMs

2023 Fall, Jaeho Lee

EECE454 Introduction to
Machine Learning Systems

For two classes…
• We are going to learn basic stuffs about modern* language modeling

• Architectures. Transformers

• Training. Autoregressive training

* There are many classic gems, that take strikingly different structures

What can language models do?
• Sentiment Classification

• From a customer review, infer the sentiment of the customer.

What can language models do?
• Machine Translation

• Text sentences are translated into another language.

What can language models do?
• Chatbot

• Generate human-like responses to given text prompts

What can language models do?
• Retrieval-Augmented Generation

• Use external tools to provide a more trustworthy and
up-to-date response.

What can language models do?
• Text-Prompted Image Generation

• Generate an image that
corresponds to the given query

GitHub Copilot

Transformer Basics

Natural Language Processing

Discriminative
Model

Generative
Model

[Deep] [models] [are] [super][awesome]

GOOD�/�BAD

[Deep] [models] [are] [super]

[awesome]

• Discriminative. Given a sequence of words, predict the output.

• Generative. Given a sequence of words, predict the next word.

Past: Recurrent Neural Networks
• Input. The current input and past state.

• Output. The current output and the current state.

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks

Past: Recurrent Neural Networks
• Limitations.

• Struggles to capture long-term dependencies.

• Vanishing / Exploding Gradient
(LSTMs have explicit modules for “long-term memory”)

• Difficult to scale up—sequential computation is forced.

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks

Transformers
Vaswani�et�al.,�“Attention�is�all�you�need,”�NeurIPS�2017

Key concepts

• Tokenize words

• Map tokens into embeddings

• Transformer blocks

• Positional Encoding

• Linear Prediction Head

(1) Tokenization: Words —> Tokens
https://platform.openai.com/tokenizer

• Maps a word to one or more tokens.

(2) Embedding: Tokens —> Embeddings
https://cezannec.github.io/CNN_Text_Classification/

Maps each token to a high-dimensional vector.

Example. One-hot encoding

• Easy to build

• Very long, if vocab size is large.

• Very sparse—dimensions wasted?

• No semantics

(2) Embedding: Tokens —> Embeddings
https://cezannec.github.io/CNN_Text_Classification/

Typical Choice. Word embedding
 (e.g., Word2Vec, GLoVe)

• Low-dimension

• Values take continuous values

• Learned jointly / separately

• Rich in semantics

• Can represent “similarity” by inner prod.

(3) Transformer Blocks
https://jalammar.github.io/illustrated-gpt2/

Transformers consists of a stack of encoders & a stack of decoders

• Encoder-only: BERT

• Decoder-only: GPT
 (our focus)

(3) Transformer Blocks
https://cameronrwolfe.substack.com/p/llama-2-from-the-ground-up

Each encoder/decoder block consists of four elements

• Multi-Head Attention (MHA)

• Feed-Forward Network (FFN)

• LayerNorm / RMSNorm

• Residual Connections

(3) Transformer Blocks
https://jalammar.github.io/illustrated-transformer/

MHA. Generates a vector for each tokens.

• Quantifies the relationship between tokens

FFN. Concatenates and process each vector separately.

(3-1) Multi-Head Attention
High-Level Idea

• Quantifies how much the
information in a token is related
to another token.

1. Q,K,V

2. Q,K —> Attention score

3. Attention, V —> Output

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention
• Step 1. For each token, we compute query, key, and value.

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention
• Step 2. Compute attn scores from query (self) and key (self,others)

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention
• Step 3. Compute output as a weighted sum of values,

 weighted by the softmax of attn scores.

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Computation & Memory

Suppose that we have tokens.
We compute…

• Q/K/V for each tokens,

•

• Attention for each Q-K pairs

•

• Weighted sum

•

n

O(n)

O(n2)

O(n2)

(3-1) Multi-Head Attention
• Multi-Head. We have multiple parallel attention layers.

 —> Concatenate the outputs, and do linear projection.

https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html

(3-1) Multi-Head Attention
https://www.tensorflow.org/text/tutorials/transformer

• Heads can capture diverse attention patterns.

(3-1) Multi-Head Attention
https://jalammar.github.io/illustrated-gpt2/

• In decoders, the self-attention layers is masked:

• Can only see previous inputs to generate current output.

(3-2) Feed-Forward Network
Mehta�et�al.,�“DeLight:�Deep�and�lightweight�transformer,”�ICLR�2021

• Fully-connected layers that follow the MHA.

• Inverted bottleneck.

• Compute-Heavy

(3-3) LayerNorm
https://jalammar.github.io/illustrated-gpt2/

• Same as BatchNorm, but normalizes in feature dimension.

• Applied for each sample, each token.

(4) Positional Encodings
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

• Transformer architecture disregards the position information!

• To resolve this, we simply add position-specific info on the data.

Channel�Dimension

To
ke
n�

Di
me
ns
io
n

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

More references
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Beginner

• Jay Alammar, “The Illustrated Transformer”

• https://jalammar.github.io/illustrated-transformer/

Advanced

• Phuong and Hutter, “Formal Algorithms for Transformers,” 2022

• https://arxiv.org/abs/2207.09238

• He and Hoffman, “Simplifying Transformer Blocks,” 2023

• https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

Cheers

• Next up. Training Language Models

