21. Transformers & LLMs

EECEA454 Introduction to
Machine Learning Systems

2023 Fall, Jaeho Lee

For two classes...

» We are going to learn basic stuffs about modern* language modeling
 Architectures. Transformers

- Training. Autoregressive training

©

How can | help you today?

* There are many classic gems, that take strikingly different structures

What can language models do?

« Sentiment Classification

« From a customer review, infer the sentiment of the customer.

o 0
4 &
4
My experience The productis |
<o far has been ok | guess Your support team is

. useless
fantastic!

POSITIVE NEGATIVE

What can language models do?

e Machine Translation

- Text sentences are translated into another language.

Xa Text M Images B Documents

Detect language English Spanish French % Plang German Spanish English A%

| cannot speak any German, but | have been to X Ilch kann kein Deutsch, war aber einmal als W
Gottingen once as an exchange student. Austauschstudentin in Gottingen.

4 84 / 5,000 . <) 0D 65 <

Send feedback

What can language models do?

e Chatbot

« Generate human-like responses to given text prompts

@ You

What is the best way to explain how you work in two classes, to undergraduate students?

ChatGPT

Explaining how | work to undergraduate students in two classes can be broken down into a

concise and clear explanation. Here's a simplified way to do it:
Class 1: Introduction to Artificial Intelligence
1. Start with the Basics:

* Begin by explaining that | am an Al language model, which means I'm a computer program

designed to understand and generate human-like text.

What can language models do?

e Retrieval-Augmented Generation

« Use external tools to provide a more trustworthy and
up-to-date response.

@ You

Can you look up the Wikipedia and find me the entry for the country: Republic of
Korea?

ChatGPT

l Visiting en.wikipedia.org

What can language models do?

o You
® TeXt-PI‘Ompted Image Generatlon @ Can you draw me a picture of a bowl of a ramen noodle?

- Generate an image that
corresponds to the given query ChatGPT

Here is the illustration of a bowl of ramen noodles that you requested.

GitHub Copilot

GITHUB COPILOT: CHAT @ parse_expenses.py X addresses.rb s sentiments.ts

GitHub Copilot 1mport datetime

Hi @monalisa, how can | help you?

I'm powered by Al, so surprises and mistakes are possible. Make sure
to verify any generated code or suggestions, and share feedback so
that we can learn and improve.

Ask a question or type /' for commands

Transformer Basics

Natural Language Processing

- Discriminative. Given a sequence of words, predict the output.

- Generative. Given a sequence of words, predict the next word.

GOOD / BAD [l awesome |
Discriminative Generative
Model Model

rt+t+1 1t tt1 11

[Deep] [models] [are]| [super][awesome] [Deep] [models] [are] [super]

https://www.bouvet.no/bouvet-deler/explaining-recurrent—-neural-networks

Past: Recurrent Neural Networks

- Input. The current input and|past state.
- Output. The current output and the

e | @ | @@ ® @
HIDDEN LAYER " ‘) ‘
s | &) || @ O

«ROLLED» «UNROLLED»

https://www.bouvet.no/bouvet-deler/explaining-recurrent—-neural-networks

Past: Recurrent Neural Networks

- Limitations.
» Struggles to capture long-term dependencies.

 Vanishing / Exploding Gradient

(LSTMs have explicit modules for “long-term memory”)

» Difficult to scale up—sequential computation is forced.

“the trailers were the best part of the whole movie.”

\

trailers were whole movie

N RNN OUTPUT

Key concepts

Tokenize words

Map tokens into embeddings
Transformer blocks
Positional Encoding

Linear Prediction Head

Vaswani et al.,

Transformers

Add & Norm
Feed
Forward

Add & Norm
Multi-Head
Attention
U

Positional
Encoding e &
Input
Embedding

Inputs

N x

“ Attention is all you need, ” NeurIPS 2017

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Positional
& @ Encoding
Output
Embedding

Qutputs
(shifted right)

https://platform.openai.com/tokenizer

(1) Tokenization: Words —> Tokens

« Maps a word to one or more tokens.

In the fascinating world of large language models (LLMs), much attention
1s given to model architectures, data processing, and optimization.
However, decoding strategies like beam search, which play a crucial role
in text generation, are often overlooked. In this article, we will
explore how LLMs generate text by delving into the mechanics of greedy
search and beam search, as well as sampling techniques with top-k and

nucleus sampling.

TEXT

(644, 279, 27387, 1917, 315, 3544, 4221, 4211, 320, 4178, 22365, 705,
1790, 6666, 374, 2728, 311, 1646, 78335, 11, 828, 8863, 11, 323, 26329,
13, 4452, 11, 48216, 15174, 1093, 24310, 2778, 11, 902, 1514, 264, 169906,
3560, 304, 1495, 9659, 11, 527, 3629, 45536, 13, 763, 420, 4652, 11, 584,
690, 13488, 1268, 445, 11237, 82, 7068, 1495, 555, 1624, 4504, 1139, 279,
30126, 315, 57080, 2778, 323, 24310, 2778, 11, 439, 1664, 439, 25936,
12823, 449, 1948, 12934, 323, 62607, 25936, 13]

TOKEN IDS

https://cezannec.github.io/CNN_Text Classification/

(2) Embedding: Tokens —> Embeddings

Maps each token to a high-dimensional vector.

Example, One-hot enCOding ~100k columns, only one 1 in each vector

« Easy to build the —» -nnn-nnn
» Very long, if vocab size is large. 100d —» nn-n-nnn

» Very sparse—dimensions wasted?

| movie —| 0 | 0 |0 0|~ 1]0 0
« No semantics

one-hot encoding

https://cezannec.github.io/CNN_Text Classification/

(2) Embedding: Tokens —> Embeddings

Typical Choice. Word embedding
(e.g., Word2Vec, GLoVe)

~300 columns

0.2 | 0.4 | -0.1

+ Low-dimension the —

« \Values take continuous values

good — | 0.7 0.5 0.3
» Learned jointly / separately
movie — | 0.1 0.2 | 0.6

« Rich in semantics

- Can represent “similarity” by inner prod. word2vec embeddings

https://jalammar.github.io/illustrated-gpt2/

(3) Transformer Blocks

Transformers consists of a stack of encoders & a stack of decoders

- Encoder-only: BERT
- Decoder-only: GPT

gf THE TRANSFORMER
L

| am a student

a I N\
ENCODER STACK DECODER STACK
(Our fOCUS) AL ::
: (ENCODER) : ,(DECODER) :
5 : § E 5 g
g(ENCODER)5 f(DECODER)f
;) : : L) 5
E(ENCODER)§ ,(DECODER)§
§) : :) ;
;(ENCODER)E ;(DECODER)}
2) § 5) §
é(ENCODER)} ;(DECODER)}
| ; | | ; |
;(ENCODER)E ;(DECODER)f

https://cameronrwolfe.substack.com/p/llama-2-from-the-ground-up

(3) Transformer Blocks

Each encoder/decoder block consists of four elements

° MUIti'Head Attention (MHA) Normal Structure Pre-normalization
 Feed-Forward Network (FFN) T T
 LayerNorm / RMSNorm LayerTNorm M;P
« Residual Connections MTP Rmsform
LayerNorm Attention
A A
Attention RMSNorm
! I

Input Input

https://jalammar.github.io/illustrated-transformer/

(3) Transformer Blocks

MHA. Generates a vector for each tokens.
« Quantifies the relationship between tokens

FFN. Concatenates and process each vector separately.

G J

1 1

. | TI ||

[Feed Forward] [Feed Forward j
Neural Network Neural Network
t t
_____ LT

1 1

a)
Self-Attention

_ J

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention

Layer: 5 g Attention:| Input - Input -

High-Level Idea

The The
« Quantifies how much the animal_ animal_
information in a token is related didn_ didn._
to another token. - .
1 Q KV Cross Cross_
. T the the
2. QK —> Attention score street_ street_
because because
3. Attention, V —> Output it_ it_
was was_
{00 100_
tire tire

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention

» Step 1. For each , We compute , , and

Input

Embedding

Queries

Keys

Values

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention

« Step 2. Compute

Input

Embedding
Queries
Keys
Values

Score

from query (self) and (self,others)
Thinking Machines

X1 X2

g1 02

V1 V2

https://jalammar.github.io/illustrated-transformer/

(3-1) Multi-Head Attention

» Step 3. Compute as a weighted sum of
weighted by the

softmax()

V (]A'

https://jalammar.github.io/illustrated-transformer/

Input
Embedding) Computation & Memory
Queries d a2 Suppose that we have n tokens.
Keys We compute...
Values » Q/K/V for each tokens,
Score qi ¢ ki= qi » k2 = - O(n)
Divide by 8 (v/dx) Attention for each Q-K pairs
Softmax . O(nz)
Softmax « Weighted sum
X . O(n?)
Sum

https://d21l.ai/chapter attention-mechanisms—-and-transformers/multihead-attention.html

(3-1) Multi-Head Attention

- Multi-Head. We have multiple parallel attention layers.
—> Concatenate the outputs, and do linear projection.

Queries Keys Values

https://www.tensorflow.org/text/tutorials/transformer

(3-1) Multi-Head Attention

Heads can capture diverse attention patterns.

z
=
&,

this
IS
the
first
book
that

did

[END]

this
IS
the
first
book
that

did

[END]

[START]

este

este

e

e

o}

o}

primeiro
livro

Head 1
o
‘O
£ Qo
a =

Head 5

que

que

eu

eu

fiz

fiz

[END]

[END]

this

the

first

book

that

did

[END]

this

the

first

book

that

did

[END]

z
[
8,

[START]

este

este

e

e

0

0

primeiro
livro

Head 2
e
‘D
£ Qo
a =

Head 6

que

que

eu

eu

fiz

fiz

[END]

[END]

this
IS
the
first
book
that

did

[END]

this
IS
the
first
book
that

did

[END]

z
=
&,

[START]

este

este

e

0

primeiro
livro

Head 3
o
‘O
£ Qo
a =

Head 7

que

que

eu

eu

fiz

fiz

[END]

[END]

this
IS
the
first
book
that

did

[END]

this
IS
the
first
book
that

did

[END]

z
=
&,

[START]

este

este

e

e

)

0

primeiro
livro

que

Head 4
(o]
=
£
© w
| .
- -
8 = ©

Head 8

eu

eu

fiz

fiz

[END]

[END]

https://jalammar.github.io/illustrated-gpt2/

(3-1) Multi-Head Attention

 |In decoders, the self-attention layers is masked:

- Can only see previous inputs to generate current output.

Self-Attention Masked Self-Attention

e) s

Mehta et al., ICLR 2021

(3-2) Feed-Forward Network

|
d, d,, d,,
Query Key Value
dp, dp, dp,

“Delight: Deep and lightweight transformer, ”

 Fully-connected layers that follow the MHA.

e |Inverted bottleneck.

S
S
=
;ﬁ) » Attention
« Compute-Heavy = !
Q
Z 2 : 5 < | Attention ops: (Concat
0 0 0 0 'E‘ 2 d
1 FLOPs/ FLOPS FLOPS FLOPS FLOPS S| O(dmn®) t dm
description update MHA FFN attn logit
8 OPT setups ldm
9 760M 4.3E+15 35% 44% 14.8% 5.8% z Add <
10 1.3B 1.3E+16 32% 51% 12.7% 5.0% = | dim
= FFN params:
11 2.7B 25E+16 29% 56% 11.2% 3.3% S / \ Q2
12 6.7B 11E+17 24% 65% 8.1% 2.4% 2 (dr=4dm m
13 13B 41E+17 22% 69% 6.9% 1.6% k= \ /
14 30B 9.0E+17 20% 74% 53% 1.0% E ldm) \
15 66B 9.5E+17 18% 77% 4.3% 0.6% 9 > Add Depth = 4
O _ J
16 175B 24E+18 17% 80% 3.3% 0.3% = !

¥

:

https://jalammar.github.io/illustrated-gpt2/

(3-3) LayerNorm

« Same as BatchNorm, but normalizes in feature dimension.

« Applied for each sample, each token.

Layer Normalization Batch/Power Normalization

Sentence Length
Sentence Length

https://kazemnejad.com/blog/transformer_architecture_positional encoding/

(4) Positional Encodings

- Transformer architecture disregards the position information!

« To resolve this, we simply add position-specific info on the data.

— (%) f(t)(z) — sin(wk. t), if 2 = 2k Wy, = 1
cos(wg.t), ifi=2k+1 100002*/4
T]
“RAL ||i
i |

°}22"""!II!|!| I -
i

.-i';llllll!llh II .I | I
il 0

H:Ffllﬁ

g "I|||||
MY f II
vl ‘h

::5-JJ’J Jﬁf}
- Hj
ol I Ii
) Channel Dimension

Token Dimension

N..n '||Eﬁm'i]

https://jalammar.github.io/illustrated-transformer/

Decoding time step:@Z 3456 OUTPUT

ENCODER | DECODER

ENCODER DECODER

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT Je SUis etudiant

https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1@3 4 5 6 OUTPUT

Kencdee Vencdec Linear + Softmax

ENCODERS DECODERS

EMBEDDING t t ¢ &
WITH TIME
SIGNAL
EMBEDDINGS
INPUT Je SUIS étudiant PREVIOUS

OUTPUTS

https://kazemnejad.com/blog/transformer_architecture_positional encoding/

More references

Beginner

 Jay Alammar, “The lllustrated Transformer”

 https://jalammar.github.io/illustrated-transformer/

Advanced

- Phuong and Hutter, “Formal Algorithms for Transformers,” 2022

» https://arxiv.org/abs/2207.09238
- He and Hoffman, “Simplifying Transformer Blocks,” 2023

» https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

Cheers

« Next up. Training Language Models

