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For two classes…
• We are going to learn basic stuffs about modern* language modeling 

• Architectures. Transformers 

• Training. Autoregressive training

* There are many classic gems, that take strikingly different structures



What can language models do?
• Sentiment Classification 

• From a customer review, infer the sentiment of the customer.



What can language models do?
• Machine Translation 

• Text sentences are translated into another language.



What can language models do?
• Chatbot 

• Generate human-like responses to given text prompts



What can language models do?
• Retrieval-Augmented Generation 

• Use external tools to provide a more trustworthy and 
up-to-date response.



What can language models do?
• Text-Prompted Image Generation 

• Generate an image that 
corresponds to the given query
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Transformer Basics



Natural Language Processing

Discriminative 
Model

Generative 
Model

[Deep] [models] [are] [super][awesome]

GOOD�/�BAD

[Deep] [models] [are] [super]

[awesome]

• Discriminative. Given a sequence of words, predict the output. 

• Generative. Given a sequence of words, predict the next word.



Past: Recurrent Neural Networks
• Input. The current input and past state. 

• Output. The current output and the current state.

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks



Past: Recurrent Neural Networks
• Limitations. 

• Struggles to capture long-term dependencies. 

• Vanishing / Exploding Gradient 
(LSTMs have explicit modules for “long-term memory”) 

• Difficult to scale up—sequential computation is forced.

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks



Transformers
Vaswani�et�al.,�“Attention�is�all�you�need,”�NeurIPS�2017

Key concepts 

• Tokenize words 

• Map tokens into embeddings 

• Transformer blocks 

• Positional Encoding 

• Linear Prediction Head



(1) Tokenization: Words —> Tokens
https://platform.openai.com/tokenizer

• Maps a word to one or more tokens.



(2) Embedding: Tokens —> Embeddings
https://cezannec.github.io/CNN_Text_Classification/

Maps each token to a high-dimensional vector. 

Example. One-hot encoding 

• Easy to build 

• Very long, if vocab size is large. 

• Very sparse—dimensions wasted? 

• No semantics



(2) Embedding: Tokens —> Embeddings
https://cezannec.github.io/CNN_Text_Classification/

Typical Choice. Word embedding 
                             (e.g., Word2Vec, GLoVe) 

• Low-dimension 

• Values take continuous values 

• Learned jointly / separately 

• Rich in semantics 

• Can represent “similarity” by inner prod.



(3) Transformer Blocks
https://jalammar.github.io/illustrated-gpt2/

Transformers consists of a stack of encoders & a stack of decoders 

• Encoder-only: BERT 

• Decoder-only: GPT 
                          (our focus)



(3) Transformer Blocks
https://cameronrwolfe.substack.com/p/llama-2-from-the-ground-up

Each encoder/decoder block consists of four elements 

• Multi-Head Attention (MHA) 

• Feed-Forward Network (FFN) 

• LayerNorm / RMSNorm 

• Residual Connections



(3) Transformer Blocks
https://jalammar.github.io/illustrated-transformer/

MHA. Generates a vector for each tokens. 

• Quantifies the relationship between tokens 

FFN. Concatenates and process each vector separately.



(3-1) Multi-Head Attention
High-Level Idea 

• Quantifies how much the 
information in a token is related 
to another token. 

1. Q,K,V 

2. Q,K —> Attention score 

3. Attention, V —> Output

https://jalammar.github.io/illustrated-transformer/



(3-1) Multi-Head Attention
• Step 1. For each token, we compute query, key, and value.

https://jalammar.github.io/illustrated-transformer/



(3-1) Multi-Head Attention
• Step 2. Compute attn scores from query (self) and key (self,others)

https://jalammar.github.io/illustrated-transformer/



(3-1) Multi-Head Attention
• Step 3. Compute output as a weighted sum of values, 

              weighted by the softmax of attn scores.

https://jalammar.github.io/illustrated-transformer/



https://jalammar.github.io/illustrated-transformer/

Computation & Memory 

Suppose that we have  tokens. 
We compute… 

• Q/K/V for each tokens, 

•  

• Attention for each Q-K pairs 

•  

• Weighted sum 

•

n

O(n)

O(n2)

O(n2)



(3-1) Multi-Head Attention
• Multi-Head. We have multiple parallel attention layers. 

                      —> Concatenate the outputs, and do linear projection.

https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html



(3-1) Multi-Head Attention
https://www.tensorflow.org/text/tutorials/transformer

• Heads can capture diverse attention patterns.



(3-1) Multi-Head Attention
https://jalammar.github.io/illustrated-gpt2/

• In decoders, the self-attention layers is masked: 

• Can only see previous inputs to generate current output.



(3-2) Feed-Forward Network
Mehta�et�al.,�“DeLight:�Deep�and�lightweight�transformer,”�ICLR�2021

• Fully-connected layers that follow the MHA. 

• Inverted bottleneck. 

• Compute-Heavy



(3-3) LayerNorm
https://jalammar.github.io/illustrated-gpt2/

• Same as BatchNorm, but normalizes in feature dimension. 

• Applied for each sample, each token.



(4) Positional Encodings
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

• Transformer architecture disregards the position information! 

• To resolve this, we simply add position-specific info on the data.
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https://jalammar.github.io/illustrated-transformer/



https://jalammar.github.io/illustrated-transformer/



More references
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Beginner 

• Jay Alammar, “The Illustrated Transformer” 

• https://jalammar.github.io/illustrated-transformer/ 

Advanced 

• Phuong and Hutter, “Formal Algorithms for Transformers,” 2022 

• https://arxiv.org/abs/2207.09238 

• He and Hoffman, “Simplifying Transformer Blocks,” 2023 

• https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906


Cheers

• Next up. Training Language Models


