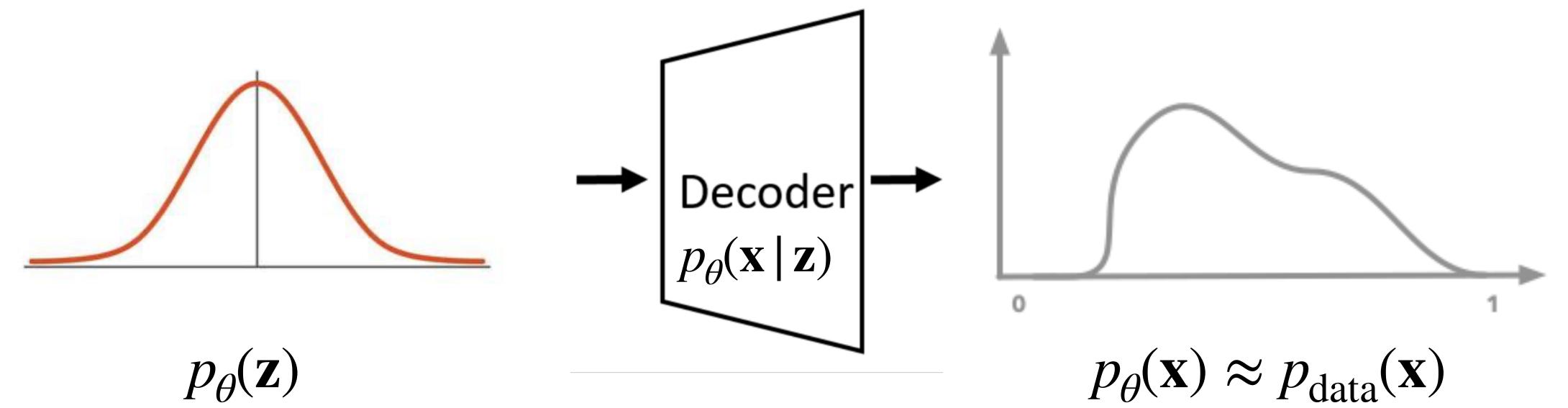
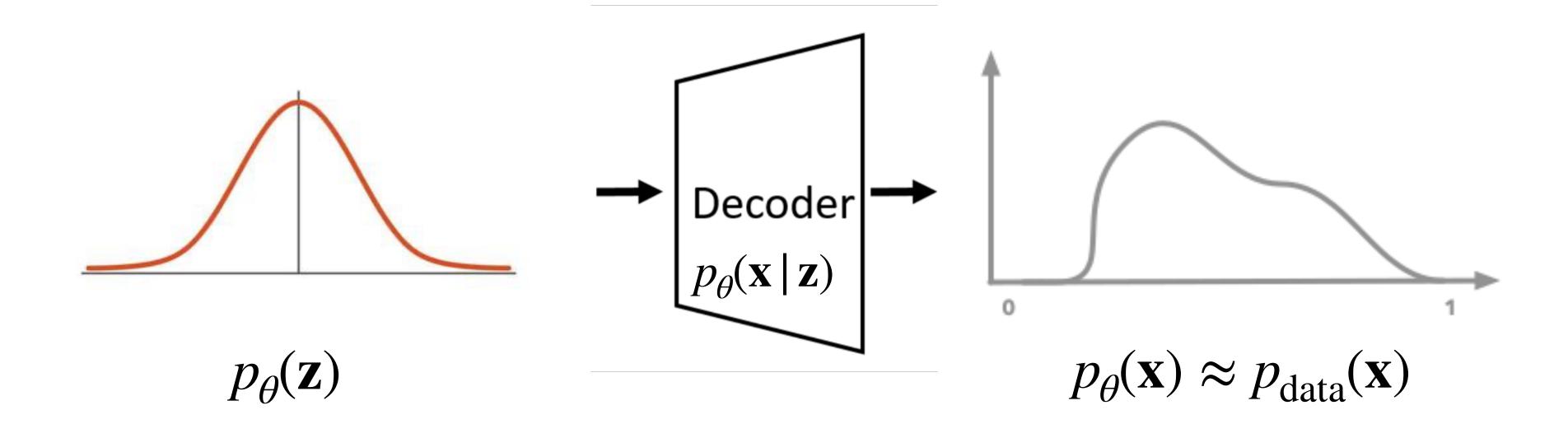
20. Generative Models (cont'd) EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Recap: Variational Autoencoder

- Train a decoder and a distribution such that if we send in a distribution, we get a data-generating distribution.
 - For simplicity, we select θ so that $p_{\theta}(\mathbf{z})$ is $\mathcal{N}(0, I_k)$.





- Similar to Naïve Bayes, we want to optimize the log probability
- Unfortunately, computing the marginal distribution is intractible:

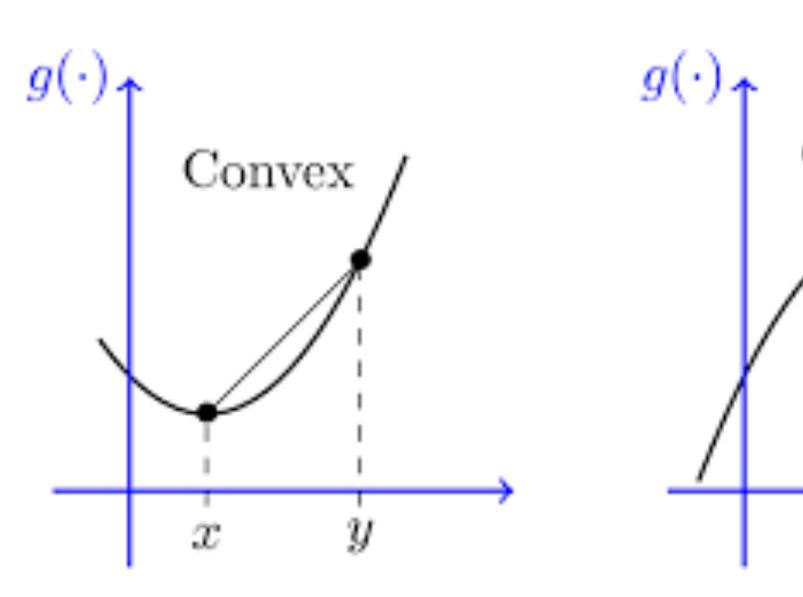
$$p_{\theta}(\mathbf{x}_i) = \int_{0}^{1}$$

 $\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}_i)$

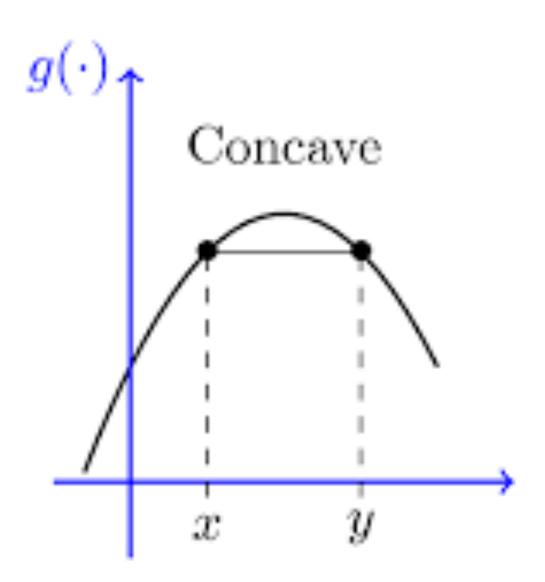
 $p_{\theta}(\mathbf{x}_i | \mathbf{z}) p_{\theta}(\mathbf{z}) \, \mathbf{dz}$

Idea: Evidence Lower bound

- Idea. We maximize the lower bound of $p_{\theta}(\mathbf{x})$, not itself.
- **Tool.** Jensen's inequality
 - For a concave function $f(\cdot)$, we have



 $\mathbb{E}[f(X)] \le f(\mathbb{E}[X])$



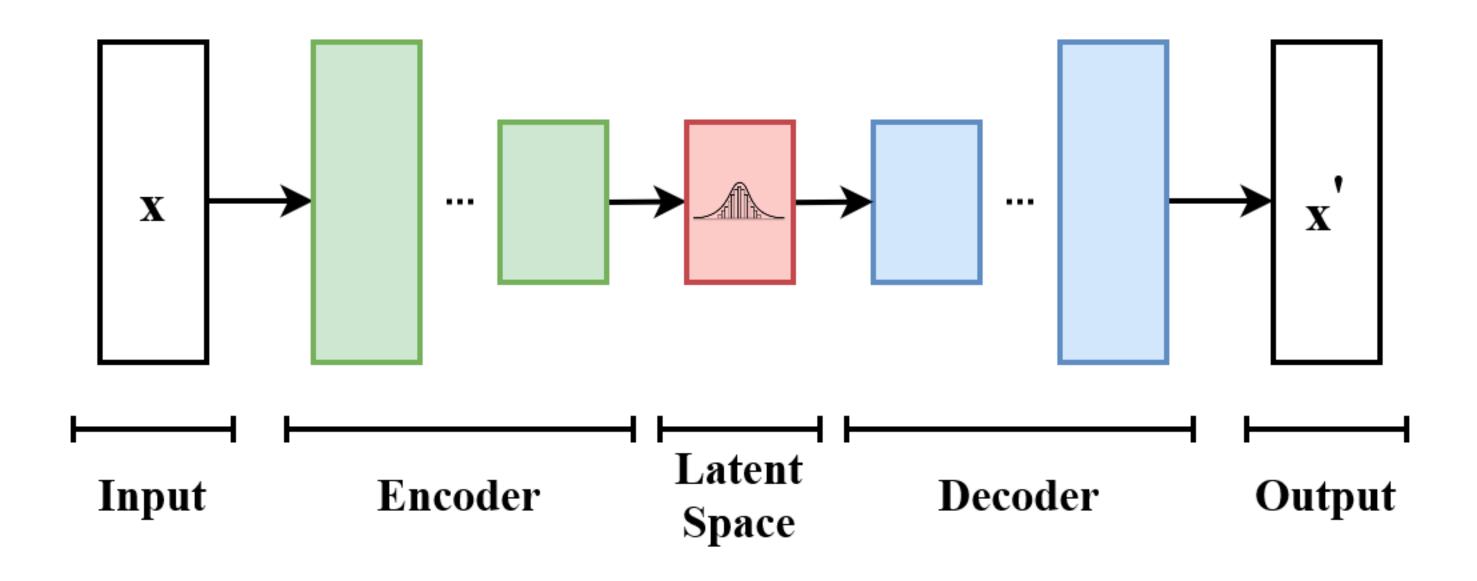
• Compute the lower bound, for some arbitrary $q_{\phi}(\mathbf{z})$ $\log p_{\theta}(\mathbf{x}) = \log \left[p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x} | \mathbf{z}) \, \mathrm{d}\mathbf{z} \right]$ $= \log \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p_{\theta}(\mathbf{x} | \mathbf{z}) \, \mathrm{d}\mathbf{z} \qquad \text{(any } q_{\phi} \text{ works; take max)}$ $\geq \int q_{\phi}(\mathbf{z}) \cdot \log \left| \frac{p_{\theta}(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right|$

 $= -D(q_{\phi}(\mathbf{z}) \| p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}}[\log p_{\theta}(\mathbf{x} | \mathbf{z})]$

• The optimal $q_{\phi}(\mathbf{z})$ may depend on \mathbf{x} ... thus write as $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

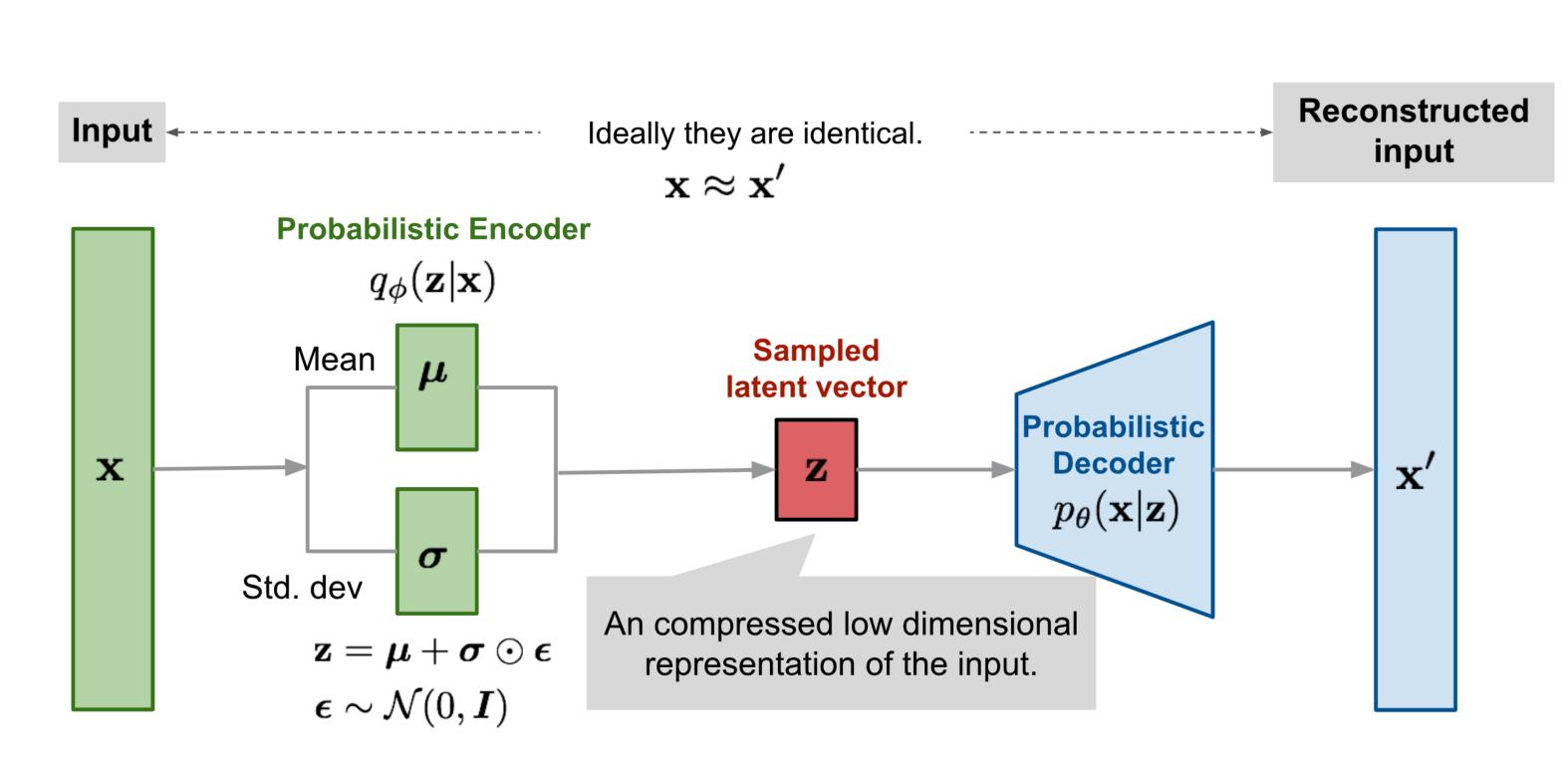
$$\frac{\mathbf{z}}{\mathbf{z}} p_{\theta}(\mathbf{x} | \mathbf{z}) d\mathbf{z}$$
 (Jensen's ineq.)

- Thus, we have $\max_{\theta} \log p_{\theta}(\mathbf{x}_{i}) \geq \max_{\theta} \max_{\phi} \left(-D(q_{\phi}(\mathbf{z} \mid \mathbf{x}_{i}) \| p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\cdot \mid \mathbf{x}_{i})}[\log p_{\theta}(\mathbf{x}_{i} \mid \mathbf{z})] \right)$
- In VAE, we jointly train a probabilistic encoder that expresses $q_{\phi}(\mathbf{z} | \mathbf{x}_i)$
- Question. How to implement a probabilistic function?



Idea: Reparameterization Trick

Idea. We model $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ as a conditional Gaussian $\mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2)$, and let the function learn μ_x , σ_x instead.



 Now, look at the optimization problem $\max_{\theta} \max_{\phi} \left(-D(q_{\phi}(\mathbf{z} \mid \mathbf{x}_{i}) \parallel \boldsymbol{\mu}_{i}) \right)$

• Second term. If we model with

 $p_{\theta}(\mathbf{x}_i | \mathbf{z}) =$

then this is equivalent to

$$-\mathbb{E}_{q_{\phi}(\cdot|\mathbf{x}_{i})}\left[\frac{1}{2\eta}\|\mathbf{x}_{i}-f_{\theta}(\mathbf{z}_{i})\|^{2}\right]+\mathrm{const}\,.$$

$$p_{\theta}(\mathbf{z}) + \mathbb{E}_{q_{\phi}(\cdot | \mathbf{x}_{i})}[\log p_{\theta}(\mathbf{x}_{i} | \mathbf{z})]$$

$$\mathcal{N}(f_{\theta}(\mathbf{z}), \eta \cdot I_d),$$

(i.e., simply use the squared loss!)

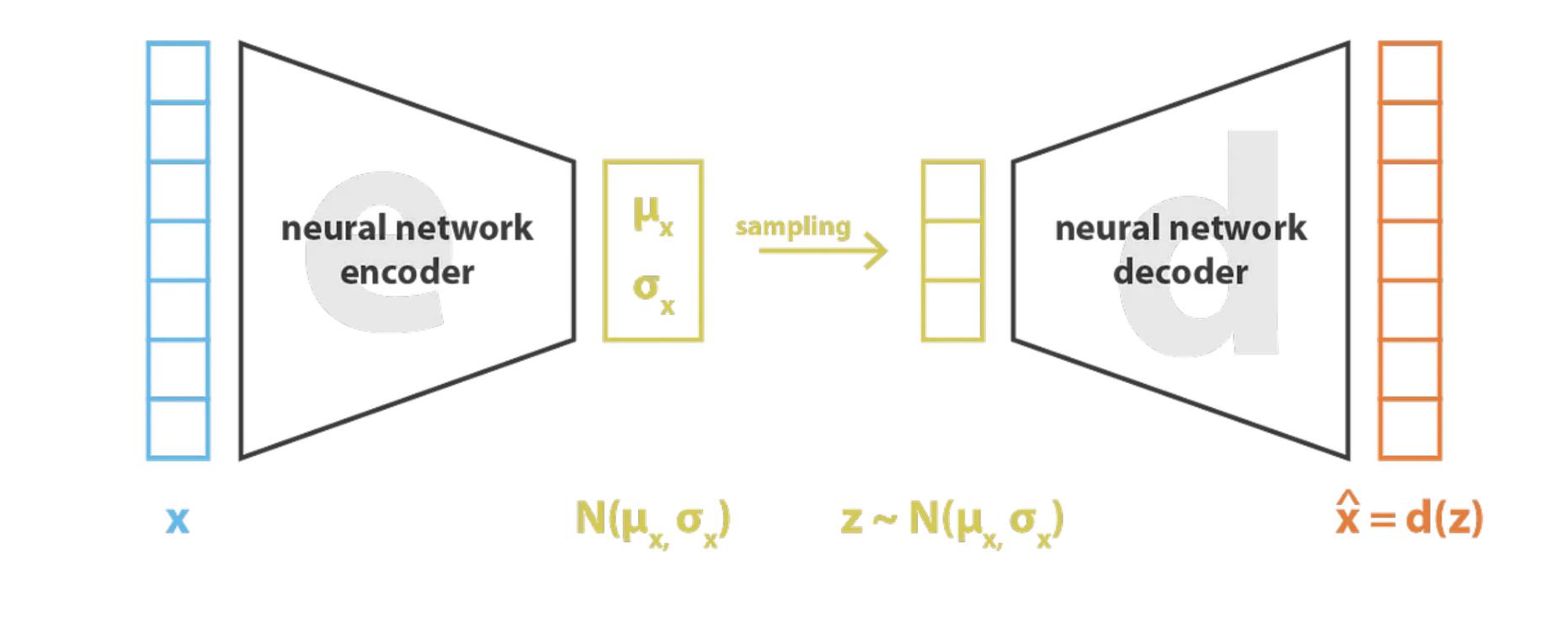
$$\max_{\theta} \max_{\phi} \left(-\frac{D(q_{\phi}(\mathbf{z} \mid \mathbf{x}_{i}) \| p_{\theta}(\mathbf{z}))}{\phi} - \frac{1}{2\eta} \mathbb{E}_{q_{\phi}(\cdot \mid \mathbf{x}_{i})}[\|\mathbf{x}_{i} - f(\mathbf{z}_{i})\|^{2}] \right)$$

• First term. If we use the Gaussian encoder

$$q_{\phi} = \mathcal{N}(\mu_{\mathbf{x}_i}, \sigma_{\mathbf{x}_i} \cdot I_k),$$

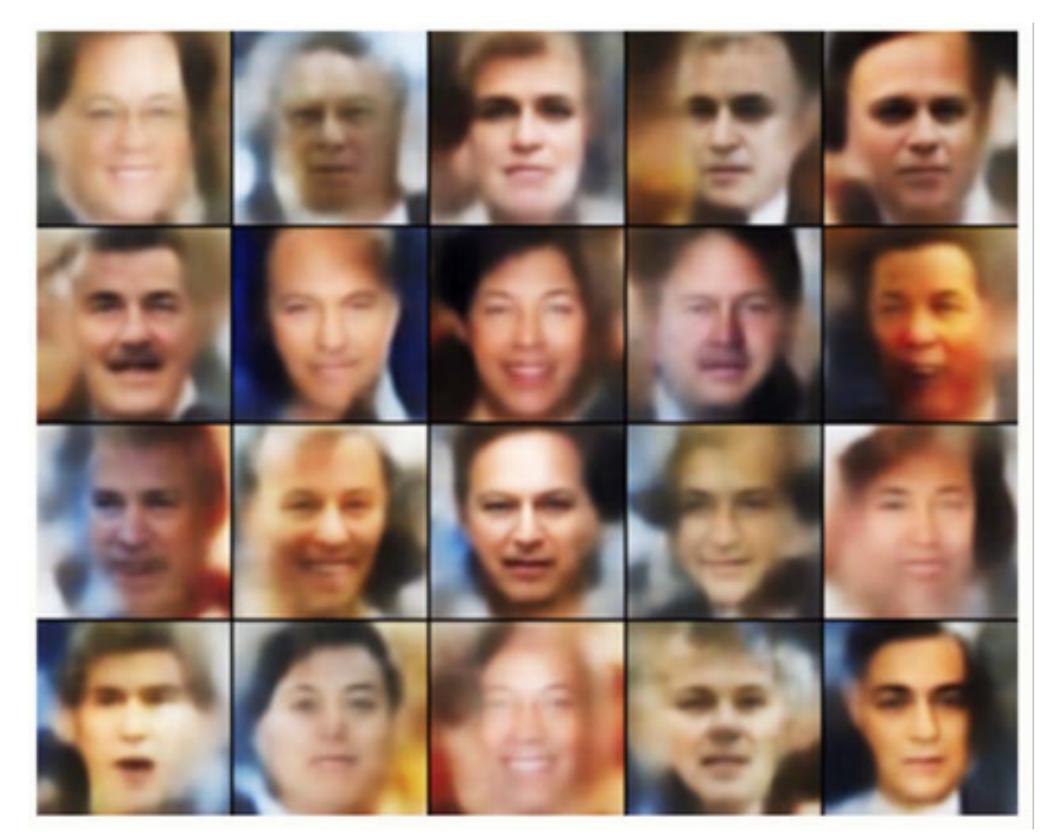
then this is nothing but squared regularizers on $\mu, \sigma!$

(check by yourself)



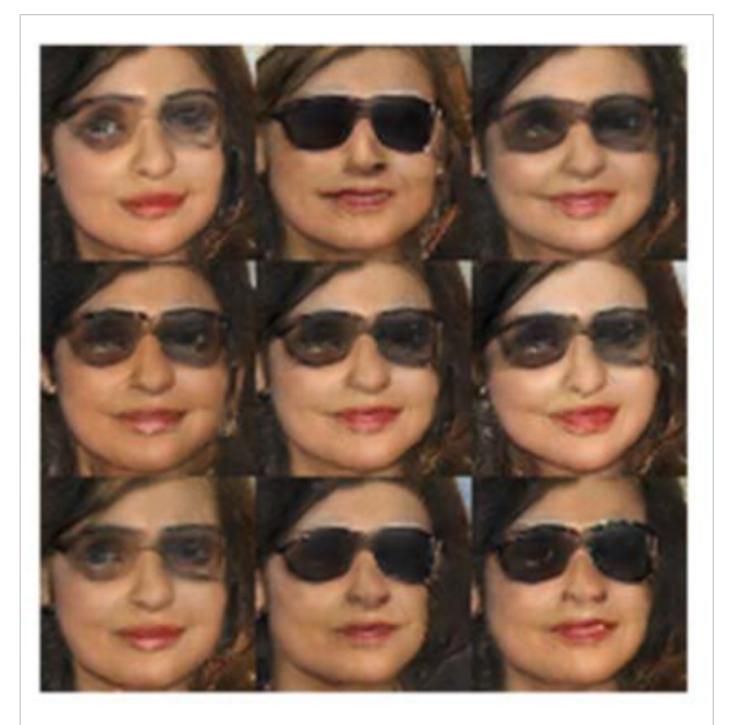
loss = $||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

data manifold for 2-d z



man with glasses without glasses

woman without glasses

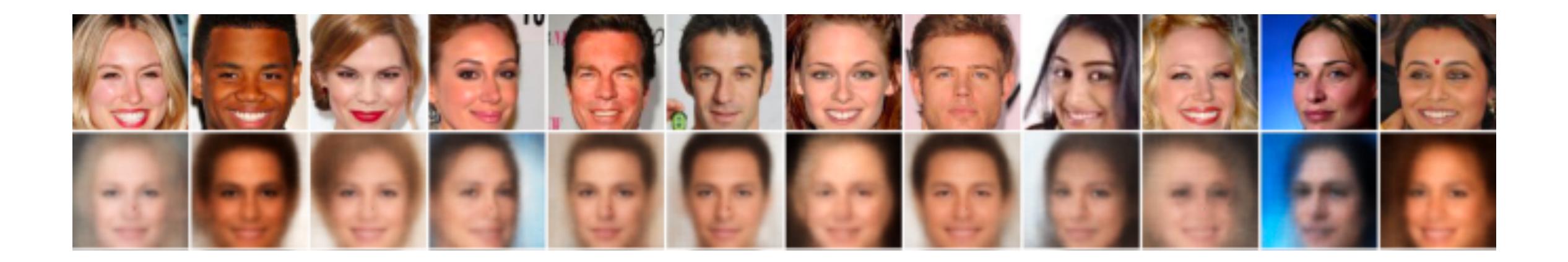


woman with glasses

Generative Adversarial Nets

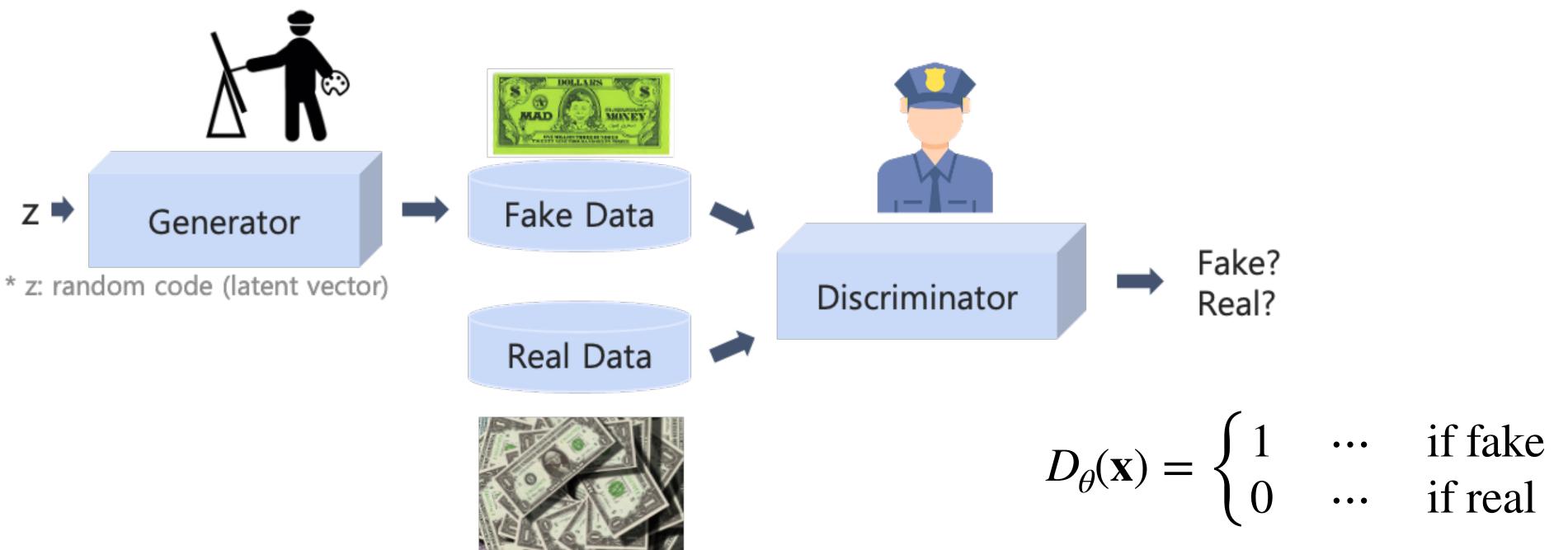
Limitations of VAE

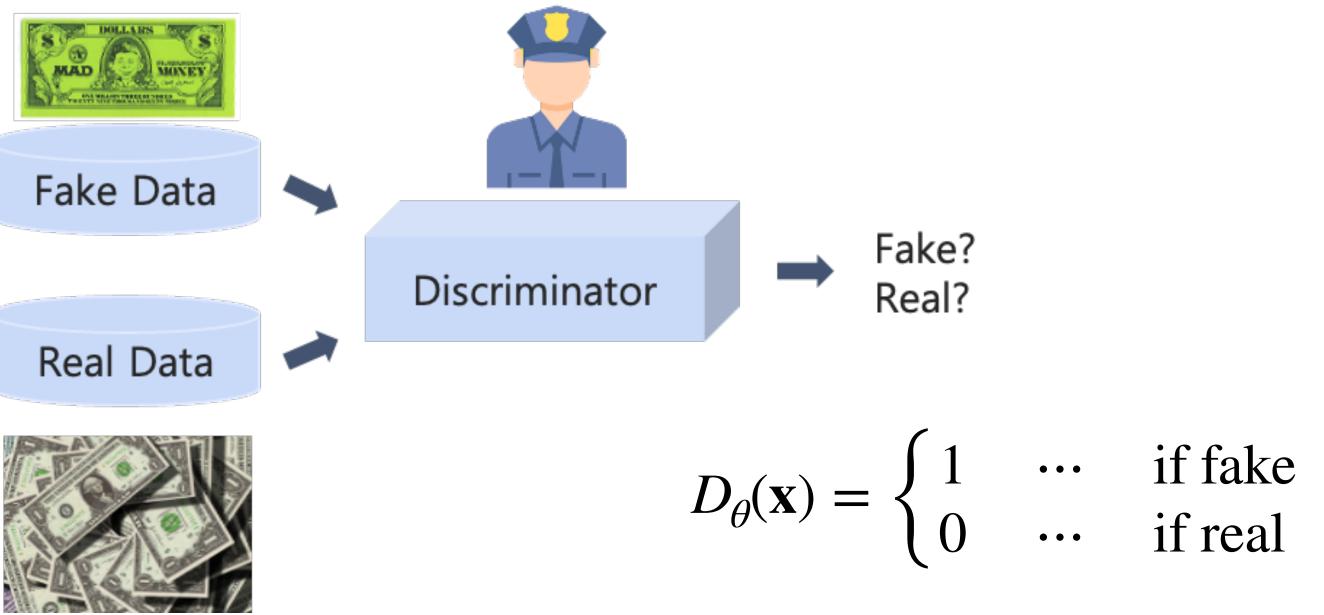
- VAE often produces blurry images
 - Clearly distinguishable from real images...



Generative Adversarial Nets

- Idea. View generative process as a two-player game
 - Generator. Tries to fool the discriminator
 - **Discriminator.** Tries to distinguish the real / fake images.





Generative Adversarial Nets

- Training. Jointly train the Generator and Discriminator
 - **Objective.** Minimax function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\theta_d}(\mathbf{x}) \right]$$

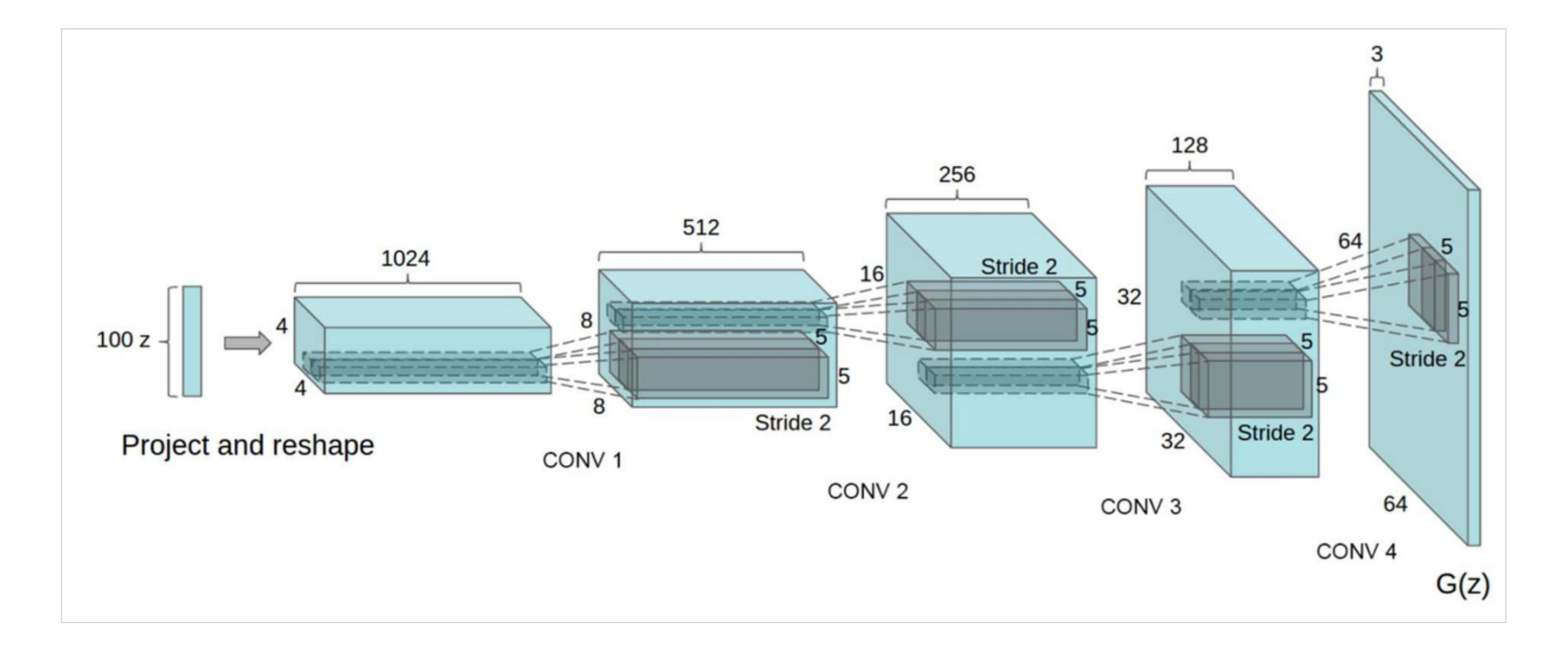
Discriminator outputs likelihood of being real

) +
$$\mathbb{E}_{\mathbf{z} \sim p(z)} \log(1 - D_{\theta_d} \circ G_{\theta_g}(z))$$

or declares be real

Discriminator declares fake image to be fake

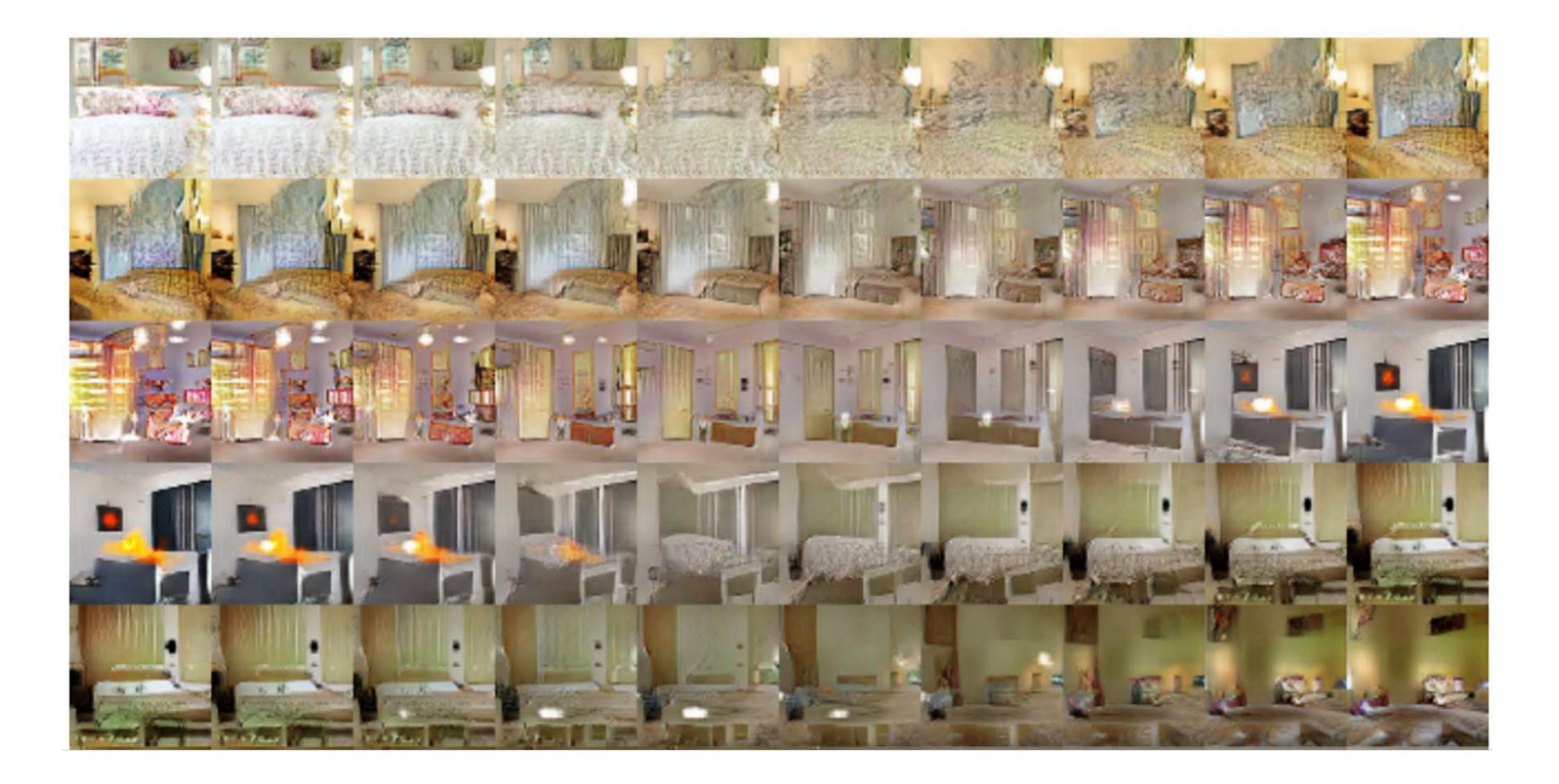
Architecture: Generator



Sharper Images



Interpolating between images

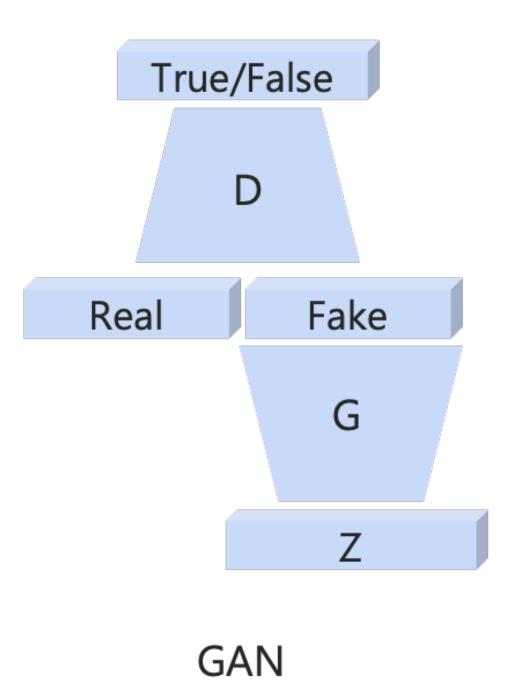


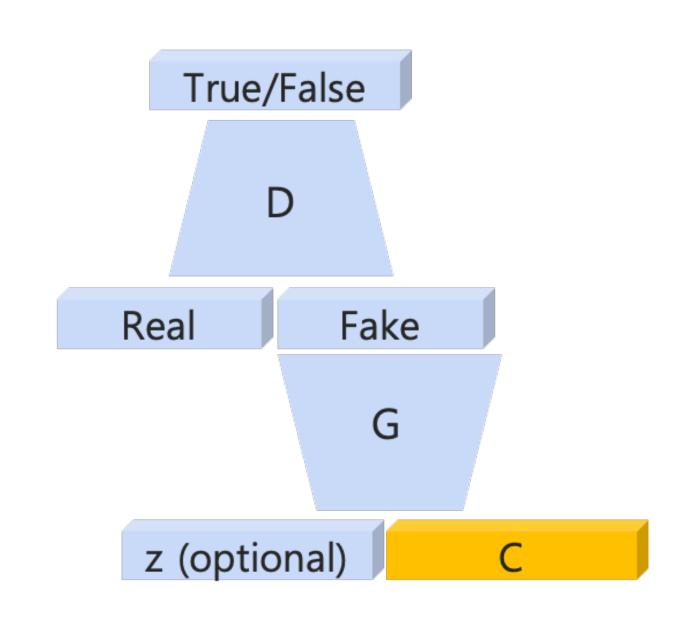
BigGAN



Conditional GAN

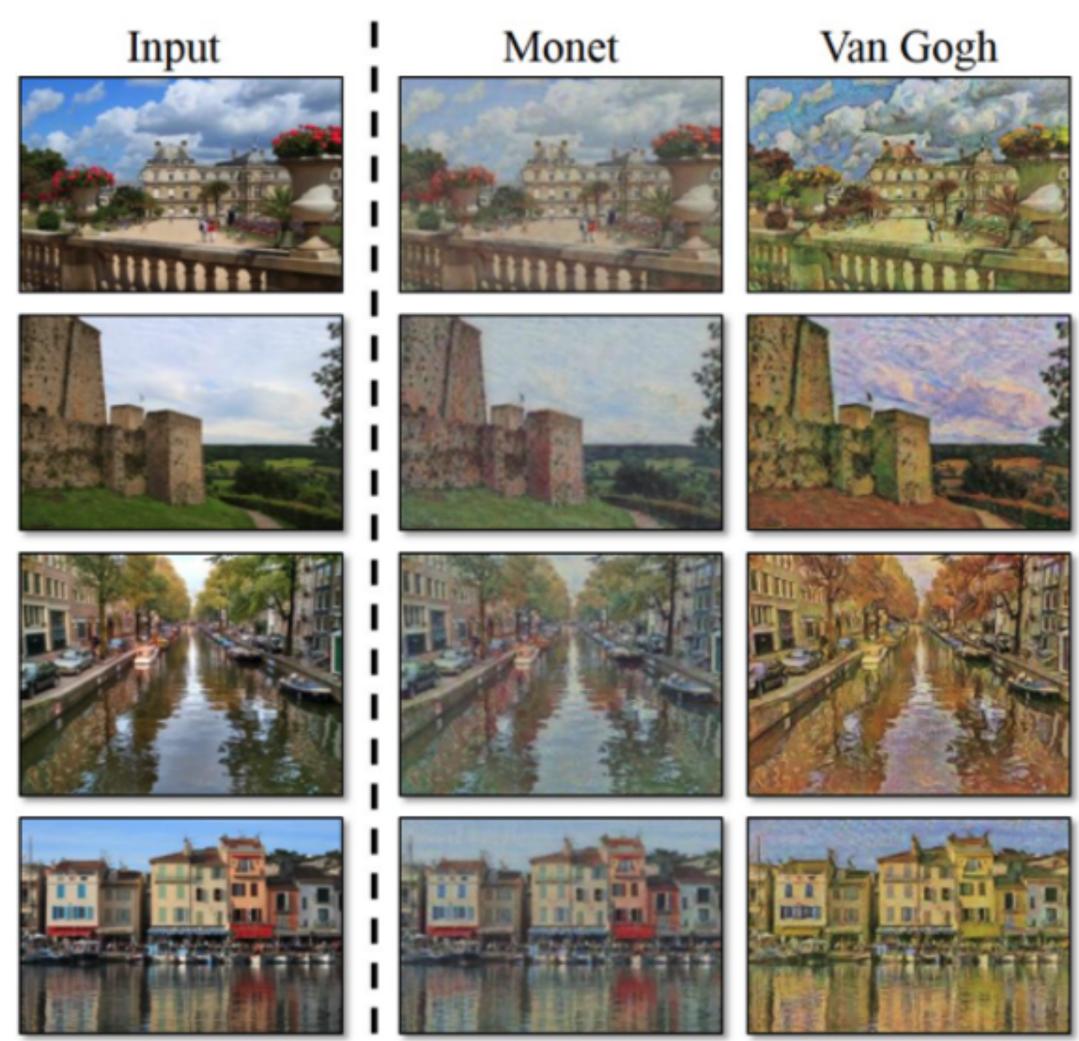
• We add class/text information to the latent code, to generate realistic images under specific conditions



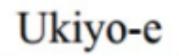


Conditional GAN

Conditional GAN



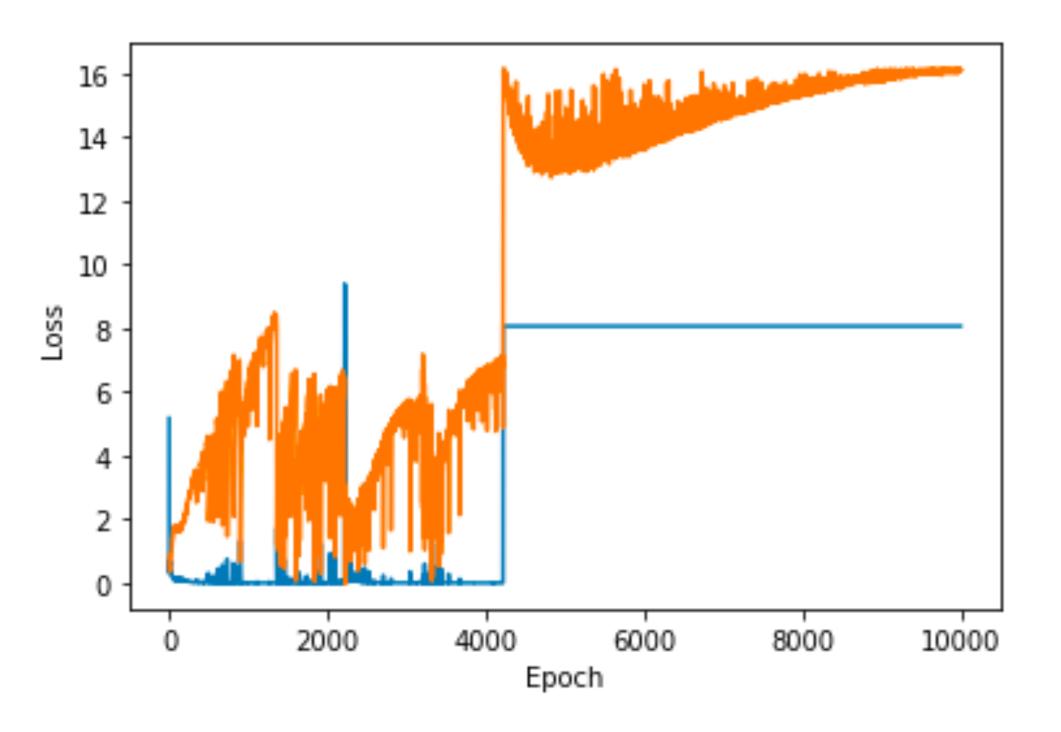
Cezanne





Pitfalls

- Training GANs are known to be very unstable—
 - If discriminator works too well, generator cannot learn
 - If generator works too well, discriminator cannot learn



Pitfalls

 Very easy to resort to not-too-diverse solutions (called mode collapse)

3	4	z	2	"H	I	V	4	8	ŝ	3	Ð	4	2	Į
Ģ	1	4	Ŧ	4	5	5	Ŷ	4	l	0	0	ļ	4	5
V	3	Ģ	2	Ģ	5	?	S	Ę	0	£1	0	P	4	Į
1	2	1	B	Z	7	み	6	8	0	Y	3	3	7	5
1	ľ.	I	?	4	5	Ģ	6	Ľ,	8	ę	P	9	3	9
		4		-			_							
		3												
Q	4	ç	?~	T,	4	ľ,	4	s	8	7	!	S	Ş	5
ŧ.	ţ.	ţ.	ŧ	ţ.	aff.	Ŧ,	ţÊ.	2	L	2	2	2	と	L
₽ [₽]	ţ.	ţÊ.	ţ.	ţ.	ţÊ.	t,	₽ Ê	2	L	2	2	2	L	L
ŧ.	ţ.	,	ţ.	Į.	ţ.	t,	ŧ₽.	2	2	2	L	レ	レ	L
4 [#]		,Ê												
₽ [₽]		ţ.					_							
ŧ.		ţ.					_							
ŧ.	,#	ţ.	t,	,ff	t,	Ť.	ţÊ.	2	2	L	2	L	L	2
aff.	ţ.	ţ.	ŧ	ţ.	ţ.	ŧ,	ţ.	2	2	L	L	2	L	L

20k steps

10k steps

2 8 5 8 35366000353660 Θ 0 જ જ 291 \mathbf{F} B e 2 8 3 8 8004533 2 32 З 0830 0 В 7 З 9 Ο 6 6 6 6 6 6 6 6 6 6-6-6-6-1-6-6-5 5 5 6-5 5 67-1166666666666666666666 666 5555 6 666 6 6-

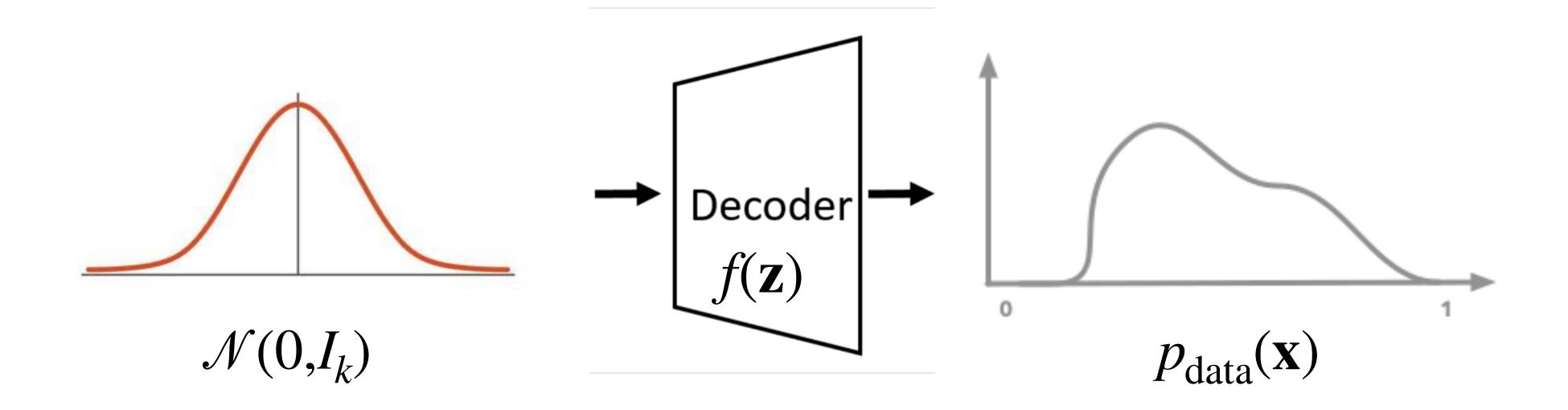
50K steps

100k steps

Diffusion Models

Motivation

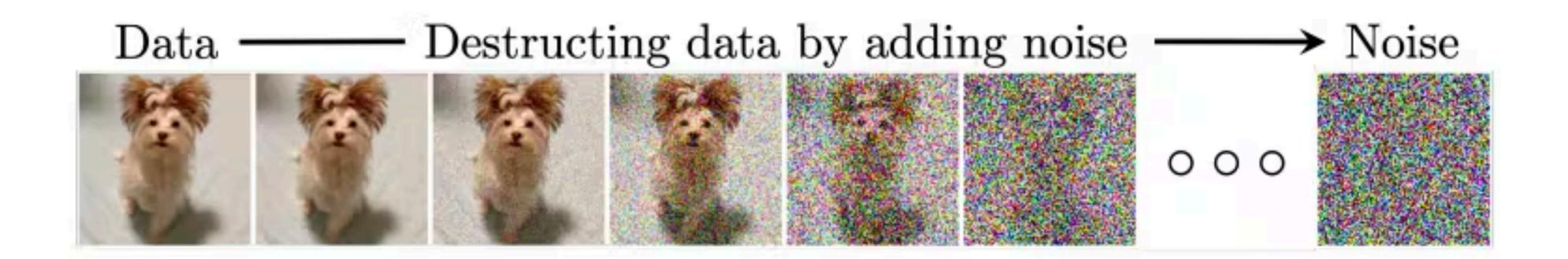
• We have been finding ways to generate $p_{\text{data}}(\mathbf{x})$ from $\mathcal{N}(\mathbf{0}, I_k)$



Motivation

- We have been finding ways to generate $p_{data}(\mathbf{x})$ from $\mathcal{N}(0, I_k)$
- If we wanted to to the **opposite**, this is quite easy...
 - Repeatedly apply

 $\mathbf{x} \mapsto \sqrt{t}\mathbf{x} + \sqrt{1 - t} \cdot \epsilon, \qquad \epsilon \sim \mathcal{N}(0, I_d)$

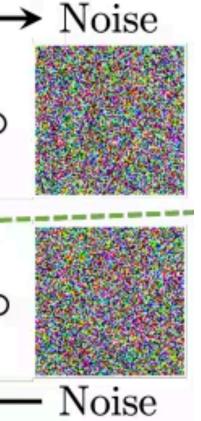


Motivation

- We have been finding ways to generate $p_{data}(\mathbf{x})$ from $\mathcal{N}(0, I_k)$
- If we wanted to to the **opposite**, this is quite easy...
 - Repeatedly apply
- **Idea.** Why don't we train a function that can invert this process? (Note: we can use the ELBO again)

Data — Destructing data by adding noise —

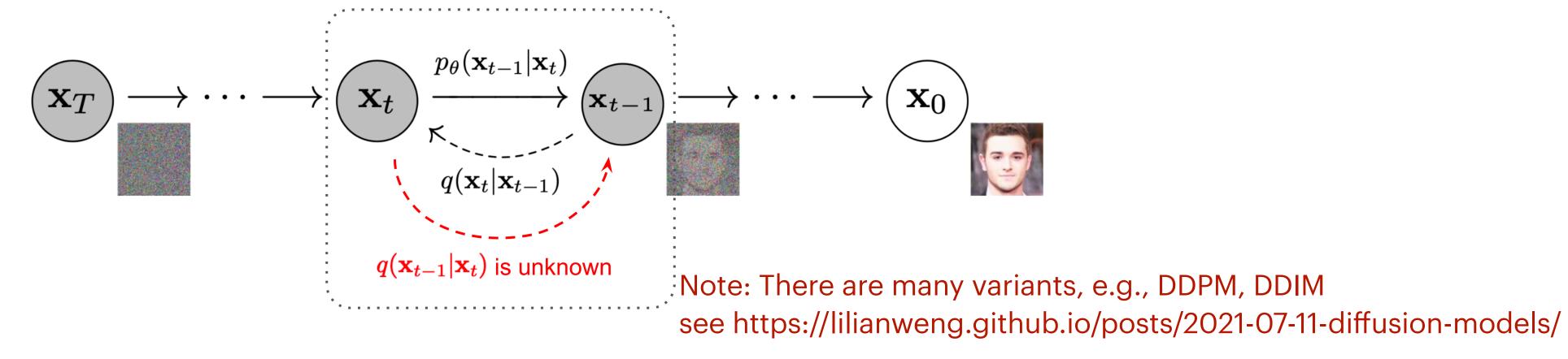
Generating samples by denoising Data 🔶



Training

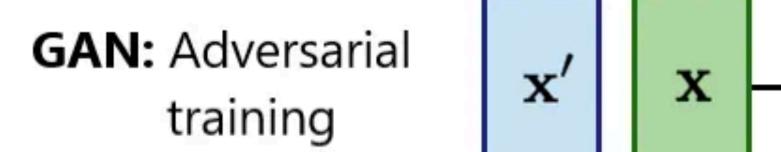
• **Repeat four steps** until convergence.

- Sample an image \mathbf{x}_0 from the dataset.
- Sample some time interval $t \in \text{Unif}(\{1, ..., T\})$
- Sample a noise $\epsilon \sim \mathcal{N}(0,\mathbf{I})$
- Train a function to minimize $\|\mathbf{x}_0 f\|$

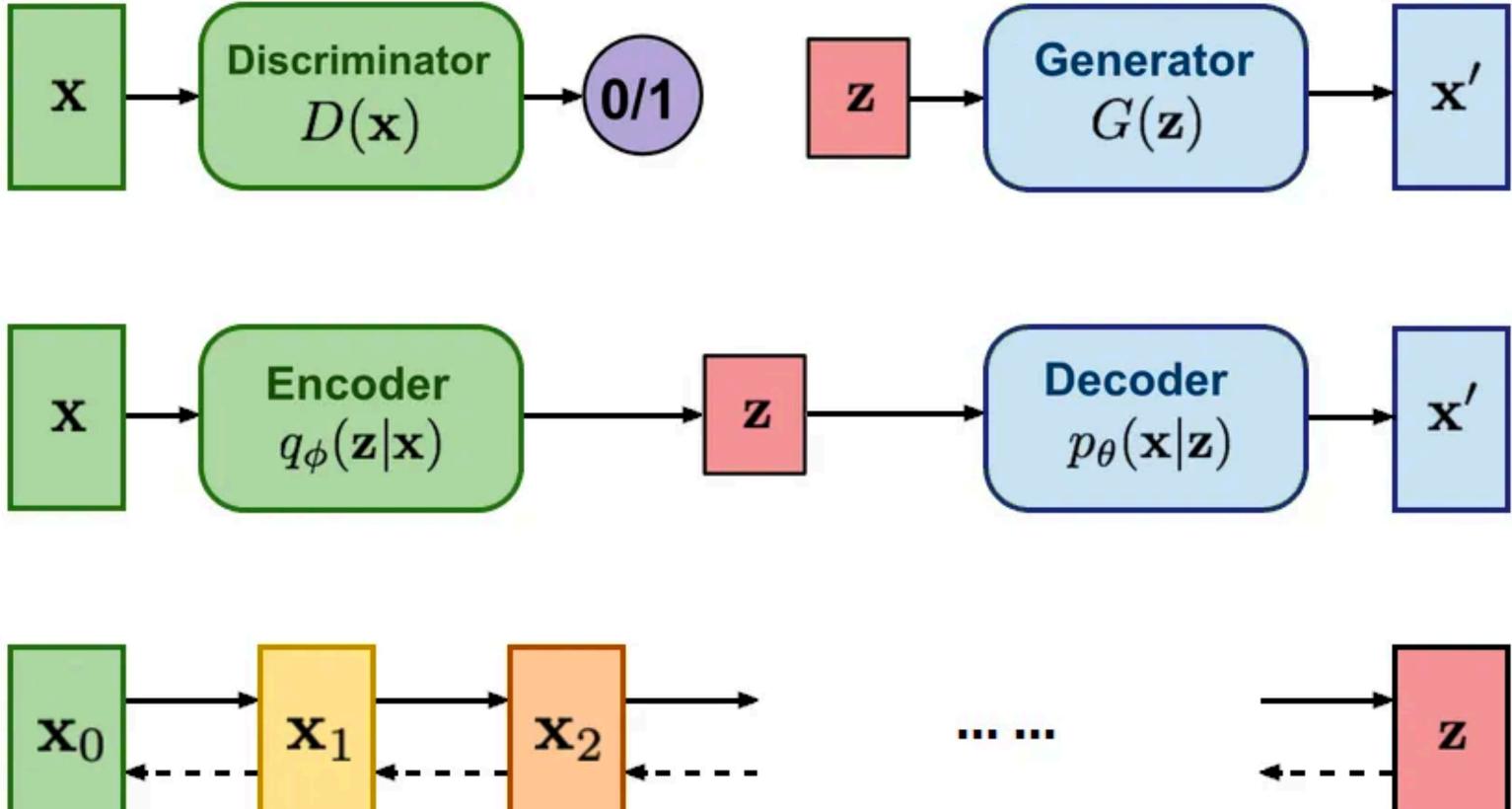


$$C\left(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon; t\right) \|^2$$

Use variational lower bound

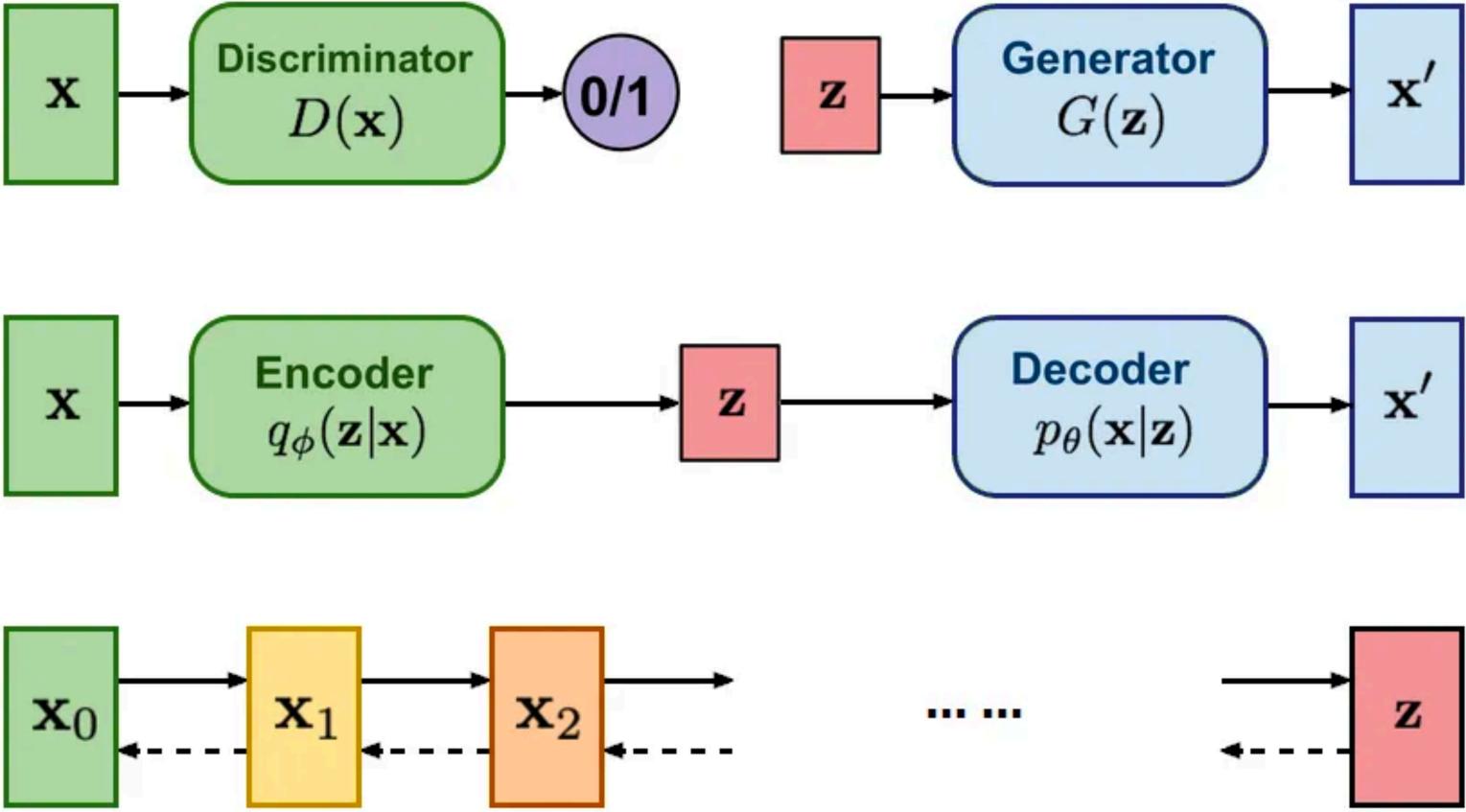


VAE: maximize variational lower bound

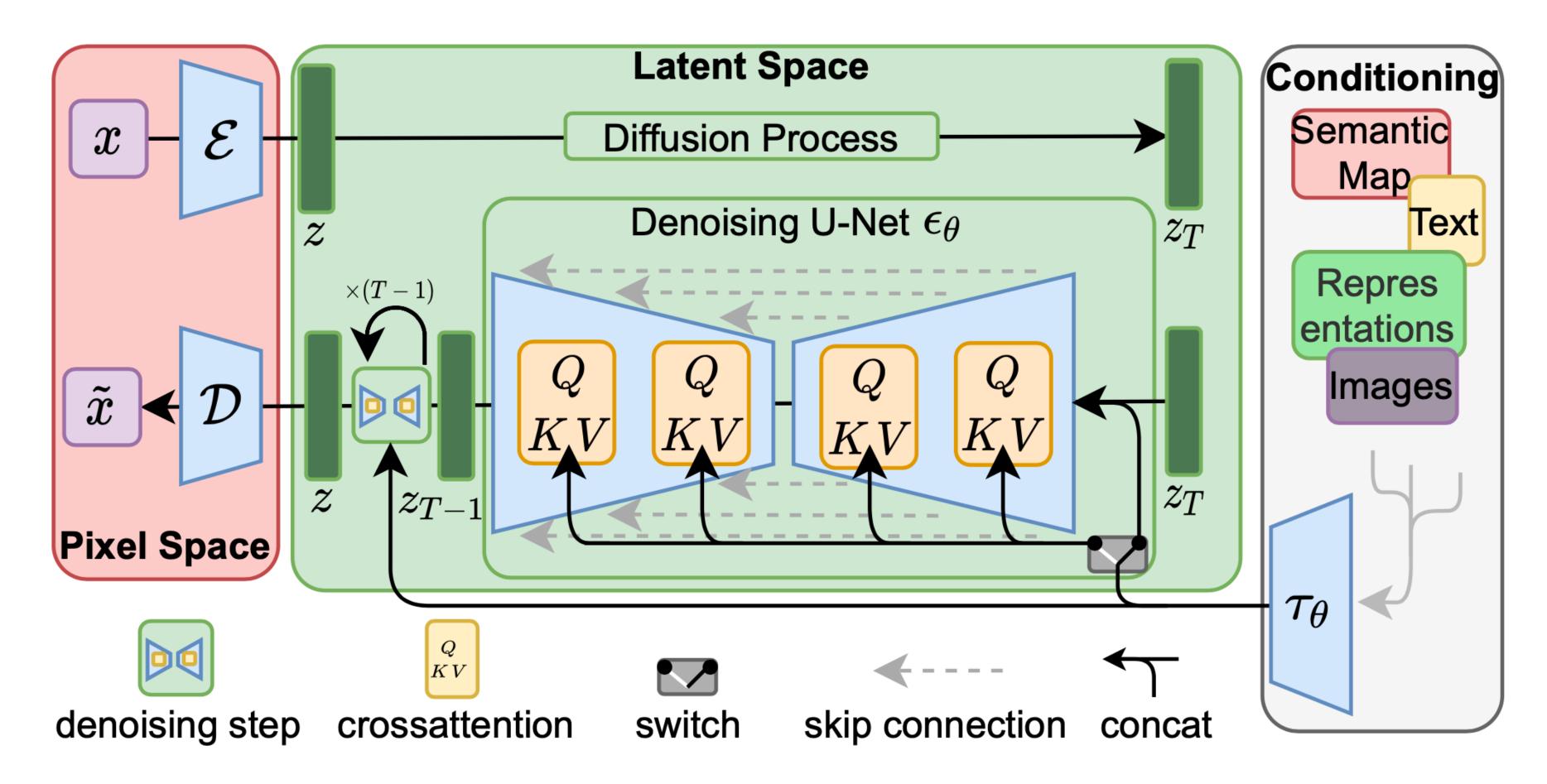


Diffusion models:

Gradually add Gaussian noise and then reverse



• We do the diffusion process inside some latent space.



Latent Diffusion

- For simple implementations:
 - <u>https://huggingface.co/blog/annotated-diffusion</u>
- For mathematical details:

<u>https://lilianweng.github.io/posts/2021-07-11-diffusion-models/</u>

• <u>Next up.</u> Transformer Basics

