
20. Generative Models (cont’d)

2023 Fall, Jaeho Lee

EECE454 Introduction to
Machine Learning Systems

Recap: Variational Autoencoder
• Train a decoder and a distribution such that

if we send in a distribution, we get a data-generating distribution.

• For simplicity, we select so that is .θ pθ(z) 𝒩(0,Ik)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

• Similar to Naïve Bayes, we want to optimize the log probability

• Unfortunately, computing the marginal distribution is intractible:

max
θ

n

∑
i=1

log pθ(xi)

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

Idea: Evidence Lower bound

• Idea. We maximize the lower bound of , not itself.

• Tool. Jensen’s inequality

• For a concave function , we have

pθ(x)

f(⋅)

𝔼[f(X)] ≤ f(𝔼[X])

• Compute the lower bound, for some arbitrary

 (any works; take max)

 (Jensen’s ineq.)

• The optimal may depend on … thus write as

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz qϕ

≥ ∫ qϕ(z) ⋅ log [pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼qϕ
[log pθ(x |z)]

qϕ(z) x qϕ(z |x)

• Thus, we have

• In VAE, we jointly train a probabilistic encoder that expresses

• Question. How to implement a probabilistic function?

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |xi)

Idea: Reparameterization Trick

• Idea. We model as a conditional Gaussian ,

 and let the function learn instead.

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx

• Now, look at the optimization problem

• Second term. If we model with

,

 then this is equivalent to

 (i.e., simply use the squared loss!)

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩(fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [1
2η

∥xi − fθ(zi)∥2] + const .

• First term. If we use the Gaussian encoder

,

 then this is nothing but squared regularizers on !

(check by yourself)

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) −

1
2η

𝔼qϕ(⋅|xi)[∥xi − f(zi)∥2])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

μ, σ

Generative Adversarial Nets

• VAE often produces blurry images

• Clearly distinguishable from real images…

Limitations of VAE

• Idea. View generative process as a two-player game

• Generator. Tries to fool the discriminator

• Discriminator. Tries to distinguish the real / fake images.

Generative Adversarial Nets

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real

• Training. Jointly train the Generator and Discriminator

• Objective. Minimax function

• Discriminator outputs likelihood of being real

min
θg

max
θd

[𝔼x∼pdata
log Dθd

(x) + 𝔼z∼p(z) log(1 − Dθd
∘ Gθg

(z))]

Generative Adversarial Nets

Discriminator declares
real image to be real

Discriminator declares
fake image to be fake

Architecture: Generator

Sharper Images

Interpolating between images

BigGAN

Conditional GAN
• We add class/text information to the latent code,

to generate realistic images under specific conditions

Conditional GAN

• Training GANs are known to be very unstable—

• If discriminator works too well, generator cannot learn

• If generator works too well, discriminator cannot learn

Pitfalls

• Very easy to resort to not-too-diverse solutions
(called mode collapse)

Pitfalls

Diffusion Models

Motivation

• We have been finding ways to generate from pdata(x) 𝒩(0,Ik)

𝒩(0,Ik) pdata(x)
f(z)

Motivation

• We have been finding ways to generate from

• If we wanted to to the opposite, this is quite easy…

• Repeatedly apply

pdata(x) 𝒩(0,Ik)

x ↦ tx + 1 − t ⋅ ϵ, ϵ ∼ 𝒩(0,Id)

Motivation

• We have been finding ways to generate from

• If we wanted to to the opposite, this is quite easy…

• Repeatedly apply

• Idea. Why don’t we train a function that can invert this process?
(Note: we can use the ELBO again)

pdata(x) 𝒩(0,Ik)

x ↦ tx + 1 − t ⋅ ϵ, ϵ ∼ 𝒩(0,Id)

Training
• Repeat four steps until convergence.

• Sample an image from the dataset.

• Sample some time interval

• Sample a noise

• Train a function to minimize

x0

t ∈ Unif({1,…, T})

ϵ ∼ 𝒩(0,I)

x0 − f(ᾱtx0 + 1 − ᾱtϵ; t) 2

Note: There are many variants, e.g., DDPM, DDIM
see https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Latent Diffusion
• We do the diffusion process inside some latent space.

More references
• For simple implementations:

• https://huggingface.co/blog/annotated-diffusion

• For mathematical details:

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Cheers

• Next up. Transformer Basics

