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Recap: Variational Autoencoder
• Train a decoder and a distribution such that 

if we send in a distribution, we get a data-generating distribution. 

• For simplicity, we select  so that  is .θ pθ(z) 𝒩(0,Ik)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)



• Similar to Naïve Bayes, we want to optimize the log probability 

 

• Unfortunately, computing the marginal distribution is intractible: 

max
θ

n

∑
i=1

log pθ(xi)

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)



Idea: Evidence Lower bound

• Idea. We maximize the lower bound of , not itself. 

• Tool. Jensen’s inequality 

• For a concave function , we have 

 

pθ(x)

f( ⋅ )

𝔼[ f(X)] ≤ f(𝔼[X])



• Compute the lower bound, for some arbitrary  

 

         (any  works; take max) 

              (Jensen’s ineq.) 

 

• The optimal  may depend on … thus write as 

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz qϕ

≥ ∫ qϕ(z) ⋅ log [ pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼qϕ
[log pθ(x |z)]

qϕ(z) x qϕ(z |x)



• Thus, we have 

 

• In VAE, we jointly train a probabilistic encoder that expresses  

• Question. How to implement a probabilistic function?

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |xi)



Idea: Reparameterization Trick

• Idea. We model  as a conditional Gaussian , 

          and let the function learn  instead. 

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx



• Now, look at the optimization problem 

 

• Second term. If we model with 

, 

                             then this is equivalent to 

 

                             (i.e., simply use the squared loss!)

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩( fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [ 1
2η

∥xi − fθ(zi)∥2] + const .



 

• First term. If we use the Gaussian encoder 

, 

                       then this is nothing but squared regularizers on ! 

(check by yourself)

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) −

1
2η

𝔼qϕ(⋅|xi)[∥xi − f(zi)∥2])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

μ, σ









Generative Adversarial Nets



• VAE often produces blurry images 

• Clearly distinguishable from real images…

Limitations of VAE



• Idea. View generative process as a two-player game 

• Generator. Tries to fool the discriminator 

• Discriminator.  Tries to distinguish the real / fake images.

Generative Adversarial Nets

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real



• Training. Jointly train the Generator and Discriminator 

• Objective. Minimax function 

 

• Discriminator outputs likelihood of being real 

min
θg

max
θd

[𝔼x∼pdata
log Dθd

(x) + 𝔼z∼p(z) log(1 − Dθd
∘ Gθg

(z))]

Generative Adversarial Nets

Discriminator declares 
real image to be real

Discriminator declares 
fake image to be fake



Architecture: Generator



Sharper Images



Interpolating between images



BigGAN



Conditional GAN
• We add class/text information to the latent code, 

to generate realistic images under specific conditions



Conditional GAN



• Training GANs are known to be very unstable— 

• If discriminator works too well, generator cannot learn 

• If generator works too well, discriminator cannot learn

Pitfalls



• Very easy to resort to not-too-diverse solutions 
(called mode collapse)

Pitfalls



Diffusion Models



Motivation

• We have been finding ways to generate  from pdata(x) 𝒩(0,Ik)

𝒩(0,Ik) pdata(x)
f(z)



Motivation

• We have been finding ways to generate  from  

• If we wanted to to the opposite, this is quite easy… 

• Repeatedly apply 

pdata(x) 𝒩(0,Ik)

x ↦ tx + 1 − t ⋅ ϵ, ϵ ∼ 𝒩(0,Id)



Motivation

• We have been finding ways to generate  from  

• If we wanted to to the opposite, this is quite easy… 

• Repeatedly apply 

 

• Idea. Why don’t we train a function that can invert this process? 
(Note: we can use the ELBO again)

pdata(x) 𝒩(0,Ik)

x ↦ tx + 1 − t ⋅ ϵ, ϵ ∼ 𝒩(0,Id)



Training
• Repeat four steps until convergence. 

• Sample an image  from the dataset. 

• Sample some time interval  

• Sample a noise  

• Train a function to minimize 

x0

t ∈ Unif({1,…, T})

ϵ ∼ 𝒩(0,I)

x0 − f( ᾱtx0 + 1 − ᾱtϵ; t) 2

Note: There are many variants, e.g., DDPM, DDIM 
see https://lilianweng.github.io/posts/2021-07-11-diffusion-models/





Latent Diffusion
• We do the diffusion process inside some latent space.



More references
• For simple implementations: 

• https://huggingface.co/blog/annotated-diffusion 

• For mathematical details: 

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Cheers

• Next up. Transformer Basics


