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• GMM. We approximated a data-generating distribution from the data 

• An elementary generative modeling (or density estimation)

Recap



• Data. Unlabeled data  

• Goal. Learn the underlying structure of the data

{xi}n
i=1 ∼ p(x)

Unsupervised learning



 “What I understand, I can create.”⇔

Generative modeling



• We are given a dataset , where  

• Goal. Fit a nice model  

           so that we can generate new samples from 

D = {xi}n
i=1 xi ∼ pdata(x)

pθ ≈ pdata
pθ(x)

Generative modeling

New data ∼ pθ(x)Training data ∼ pdata(x)

min
θ

d(pθ, pdata)



• We are given a dataset , where  

• Goal. Fit a nice model  

           so that we can generate new samples from  

• Flavors. 

• Explicit. Explicitly define and solve for  

• Implicit. Learn a model that can sample from the model 

D = {xi}n
i=1 xi ∼ pdata(x)

pθ ≈ pdata
pθ(x)

pθ(x)

pθ(x)

Generative modeling



• Suppose that we have a good model on the joint distribution 

 

e.g., learned from image-text pairs crawled from web

pθ(x, y) ≈ pdata(x, y)

What can good generative models do?



• Then we can easily build a discriminative model via Bayes rule— 

 

(often called generative classifiers)

pθ(y |x) =
pθ(x, y)
pθ(x)

What can good generative models do?
OpenAI “CLIP”



• We can also do class-conditional generation pθ(x |y)

What can good generative models do?
OpenAI “Dall-E 2”



• We can also do inpainting pθ(xi |x1, …, xi−1, xi+1, …, xd)

What can good generative models do?
NVIDIA “Image Inpainting AI Playground”



• We can also do text generation pθ(yn+1 |y1, …, yn)

What can good generative models do?
OpenAI “ChatGPT”



• We can also perform data augmentation xn+1, …, x2n ∼ pθ(x)

What can good generative models do?



Classic Autoregressive Models



Preliminaries
• Chain rule 

 

• Bayes rule 

 

• Conditional independence 

If , then 

p(x1, …, xn) = p(x1)p(x2 |x1)⋯p(xn |x1, …, xn−1)

p(x |y) =
p(x, y)
p(y)

=
p(y |x)p(x)

p(y)

x ⊥ y | z p(x |y, z) = p(x |z)



Fully Observable Model
• Explicit Density Model 

• Use chain rule to decompose the likelihood of an image  into 
products of 1D distributions. 

• Then maximize the likelihood of training data 

 

x

p(x) =
n

∏
i=1

p(x1 |x1, …, xi−1)

Likelihood of image x
Probability of i-th pixel, 
given all previous pixel values



Why use such re-expression?

• Suppose that we have a sample binary image , 

with  binary pixels. 

• Suppose a distribution  that can sample an image. 

• Q. How many possible states? 

• A.  states.

x = (x1, …, xn)
n

p(x) = p(x1, …, xn)

2n



Why use such re-expression?

• Q. How many parameters? 

• A. Consider a Bernoulli distribution . Then, x ∼ Bern(p)

p(x1, …, xn) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯p(xn |x1, …, xn−1)

1 param
2 params

4 params  params2n−1



Why use such re-expression?

• Q. How many parameters, under independence? 

• A. Consider a Bernoulli distribution . Then, 

 

But this is too restrictive to model useful distribution… 

🤔 Maybe have a neural net do this…

x ∼ Bern(p)

p(x1, …, xn) = p(x1)p(x2)p(x3)⋯p(xn)
1 param



PixelRNN
• Generate image pixels starting from a corner. 

• Dependency on previous pixels modeled using an RNN (LSTM)
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PixelRNN
• Generate image pixels starting from a corner. 

• Dependency on previous pixels modeled using an RNN (LSTM) 

• Training. Maximize likelihood over all 
                 training images



Why use such re-expression?

• Use conditional independence 

• Markov 1st order assumption:        

• Q. Number of parameters? 

 

• A. Total , which is an exponential reduction.

p(xi+1 |x1, …, xi) = p(xi+1 |xi)

p(x1, …, xn) = p(x1)p(x2 |x1)p(x3 |x2)⋯p(xn |xn−1)

2n − 1



PixelCNN
• Again, generate pixels starting from corner. 

• Dependency now modeled using CNN over context regions



Masked Convolutions
• Apply masks so that a pixel does not see “future” pixels



PixelCNN
• Again, generate pixels starting from corner. 

• Dependency now modeled using CNN over context regions 

• Faster training than PixelCNN 

• Can parallelize convolutions since 
context region values are known. 

• Generation must be done sequentially…





Special case: WaveNet
• Basically a 1D pixelCNN for speech / music generation.



PixelRNN / PixelCNN
• Pros. 

• Can explicitly compute likelihood  

• Explicit likelihood of training data gives good evaluation metric 

• Good quality, in general. 

• Cons. 

• Sequential generation; too slow! 

(many follow-ups though; PixelCNN++)

p(x)



Autoencoders



Basic Autoencoder
Input x



Input x Representation f(x)

f( ⋅ )

Basic Autoencoder



Input x Representation f(x) Output g( f(x))

f( ⋅ ) g( ⋅ )

Basic Autoencoder



Input x Representation f(x) Output g( f(x))

f( ⋅ ) g( ⋅ )

• Train with the reconstruction loss  

• The encoder/decoders are neural networks (or PCA if linear)

L(x, g( f(x)))

Basic Autoencoder



Input x Representation f(x) Output g( f(x))

f( ⋅ ) g( ⋅ )

• Problem. A trivial solution when  

• Solution. An “hourglass” structure / regularization 
                 (not a “generative” model yet; how do we sample?)

f( ⋅ ) = g( ⋅ ) = Identity

Basic Autoencoder



Output g(z)

f( ⋅ ) g( ⋅ )

• Hope. Could this work like a “generator”?  

• Blind hope, with no mathematical grounding 😅

Basic Autoencoder

Random input z



• Idea. Add noise to the input, and train to recover the clean image. 

• Still very limited capability as a generative model 
Note. This is what modern “diffusion models” do!

Denoising Autoencoder



Variational Autoencoder — Rough Idea
• Train a decoder and a distribution such that 

if we send in a distribution, we get a data-generating distribution.

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)



Variational Autoencoder — Rough Idea
• Train a decoder and a distribution such that 

if we send in a distribution, we get a data-generating distribution.

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

= ∫ pθ(z |x)pθ(x) dx



Cheers

• Next up. VAE (continued), GANs, Diffusion models


