
19. Generative Models

2023 Fall, Jaeho Lee

EECE454 Introduction to
Machine Learning Systems

• GMM. We approximated a data-generating distribution from the data

• An elementary generative modeling (or density estimation)

Recap

• Data. Unlabeled data

• Goal. Learn the underlying structure of the data

{xi}n
i=1 ∼ p(x)

Unsupervised learning

 “What I understand, I can create.”⇔

Generative modeling

• We are given a dataset , where

• Goal. Fit a nice model

 so that we can generate new samples from

D = {xi}n
i=1 xi ∼ pdata(x)

pθ ≈ pdata
pθ(x)

Generative modeling

New data ∼ pθ(x)Training data ∼ pdata(x)

min
θ

d(pθ, pdata)

• We are given a dataset , where

• Goal. Fit a nice model

 so that we can generate new samples from

• Flavors.

• Explicit. Explicitly define and solve for

• Implicit. Learn a model that can sample from the model

D = {xi}n
i=1 xi ∼ pdata(x)

pθ ≈ pdata
pθ(x)

pθ(x)

pθ(x)

Generative modeling

• Suppose that we have a good model on the joint distribution

e.g., learned from image-text pairs crawled from web

pθ(x, y) ≈ pdata(x, y)

What can good generative models do?

• Then we can easily build a discriminative model via Bayes rule—

(often called generative classifiers)

pθ(y |x) =
pθ(x, y)
pθ(x)

What can good generative models do?
OpenAI “CLIP”

• We can also do class-conditional generation pθ(x |y)

What can good generative models do?
OpenAI “Dall-E 2”

• We can also do inpainting pθ(xi |x1, …, xi−1, xi+1, …, xd)

What can good generative models do?
NVIDIA “Image Inpainting AI Playground”

• We can also do text generation pθ(yn+1 |y1, …, yn)

What can good generative models do?
OpenAI “ChatGPT”

• We can also perform data augmentation xn+1, …, x2n ∼ pθ(x)

What can good generative models do?

Classic Autoregressive Models

Preliminaries
• Chain rule

• Bayes rule

• Conditional independence

If , then

p(x1, …, xn) = p(x1)p(x2 |x1)⋯p(xn |x1, …, xn−1)

p(x |y) =
p(x, y)
p(y)

=
p(y |x)p(x)

p(y)

x ⊥ y | z p(x |y, z) = p(x |z)

Fully Observable Model
• Explicit Density Model

• Use chain rule to decompose the likelihood of an image into
products of 1D distributions.

• Then maximize the likelihood of training data

x

p(x) =
n

∏
i=1

p(x1 |x1, …, xi−1)

Likelihood of image x
Probability of i-th pixel,
given all previous pixel values

Why use such re-expression?

• Suppose that we have a sample binary image ,

with binary pixels.

• Suppose a distribution that can sample an image.

• Q. How many possible states?

• A. states.

x = (x1, …, xn)
n

p(x) = p(x1, …, xn)

2n

Why use such re-expression?

• Q. How many parameters?

• A. Consider a Bernoulli distribution . Then, x ∼ Bern(p)

p(x1, …, xn) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯p(xn |x1, …, xn−1)

1 param
2 params

4 params params2n−1

Why use such re-expression?

• Q. How many parameters, under independence?

• A. Consider a Bernoulli distribution . Then,

But this is too restrictive to model useful distribution…

🤔 Maybe have a neural net do this…

x ∼ Bern(p)

p(x1, …, xn) = p(x1)p(x2)p(x3)⋯p(xn)
1 param

PixelRNN
• Generate image pixels starting from a corner.

• Dependency on previous pixels modeled using an RNN (LSTM)

PixelRNN
• Generate image pixels starting from a corner.

• Dependency on previous pixels modeled using an RNN (LSTM)

PixelRNN
• Generate image pixels starting from a corner.

• Dependency on previous pixels modeled using an RNN (LSTM)

PixelRNN
• Generate image pixels starting from a corner.

• Dependency on previous pixels modeled using an RNN (LSTM)

• Training. Maximize likelihood over all
 training images

Why use such re-expression?

• Use conditional independence

• Markov 1st order assumption:

• Q. Number of parameters?

• A. Total , which is an exponential reduction.

p(xi+1 |x1, …, xi) = p(xi+1 |xi)

p(x1, …, xn) = p(x1)p(x2 |x1)p(x3 |x2)⋯p(xn |xn−1)

2n − 1

PixelCNN
• Again, generate pixels starting from corner.

• Dependency now modeled using CNN over context regions

Masked Convolutions
• Apply masks so that a pixel does not see “future” pixels

PixelCNN
• Again, generate pixels starting from corner.

• Dependency now modeled using CNN over context regions

• Faster training than PixelCNN

• Can parallelize convolutions since
context region values are known.

• Generation must be done sequentially…

Special case: WaveNet
• Basically a 1D pixelCNN for speech / music generation.

PixelRNN / PixelCNN
• Pros.

• Can explicitly compute likelihood

• Explicit likelihood of training data gives good evaluation metric

• Good quality, in general.

• Cons.

• Sequential generation; too slow!

(many follow-ups though; PixelCNN++)

p(x)

Autoencoders

Basic Autoencoder
Input x

Input x Representation f(x)

f(⋅)

Basic Autoencoder

Input x Representation f(x) Output g(f(x))

f(⋅) g(⋅)

Basic Autoencoder

Input x Representation f(x) Output g(f(x))

f(⋅) g(⋅)

• Train with the reconstruction loss

• The encoder/decoders are neural networks (or PCA if linear)

L(x, g(f(x)))

Basic Autoencoder

Input x Representation f(x) Output g(f(x))

f(⋅) g(⋅)

• Problem. A trivial solution when

• Solution. An “hourglass” structure / regularization
 (not a “generative” model yet; how do we sample?)

f(⋅) = g(⋅) = Identity

Basic Autoencoder

Output g(z)

f(⋅) g(⋅)

• Hope. Could this work like a “generator”?

• Blind hope, with no mathematical grounding 😅

Basic Autoencoder

Random input z

• Idea. Add noise to the input, and train to recover the clean image.

• Still very limited capability as a generative model
Note. This is what modern “diffusion models” do!

Denoising Autoencoder

Variational Autoencoder — Rough Idea
• Train a decoder and a distribution such that

if we send in a distribution, we get a data-generating distribution.

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

Variational Autoencoder — Rough Idea
• Train a decoder and a distribution such that

if we send in a distribution, we get a data-generating distribution.

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

= ∫ pθ(z |x)pθ(x) dx

Cheers

• Next up. VAE (continued), GANs, Diffusion models

