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Recap

- GMM. We approximated a data-generating distribution from the data

- An elementary generative modeling (or density estimation)
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Unsupervised learning

. Data. Unlabeled data {Xx;}'_, ~ p(X)

« Goal. Learn the underlying structure of the data

X 4 Clustering p C discrete
, dimensionality |
X 4 reduction y  z continuous

| density |
X 4 estimation y  pK on simplex




Generative modeling

What | cannot create, | do not
understand.

— )Q cchard P ?e.(fnnwn, —

AZ QUOTES

< “What | understand, | can create.”




Generative modeling

. We are given a dataset D = {X;}._,, where X; ~ py.a(X)

« Goal. Fit a nice model py & p.(. min d(Pg, Pyata)
0

so that we can generate new samples from p,(X)

4 — =g

Training data ~ p4,..(X) New data ~ p,(X)




Generative modeling

 Flavors.

. Explicit. Explicitly define and solve for p,(x)

. Implicit. Learn a model that can sample from the model py(Xx)



What can good generative models do?

» Suppose that we have a good model on the joint distribution

pH(Xa y) ~ pdata(X9 y)

e.g., learned from image-text pairs crawled from web

shakeshack & -« Follow

shakeshack € We're proud to show
our true colors. 4”Our last #Pride
Month feature spotlights Kevin Rabell,
Recruiting Manager at the Shack Home
Office, and is all about authenticity.
Check it out on our Story + stay tuned
as our team hits the streets for the NYC
Pride March! &S#shakeshack
#shackpride




OpenAl “CLIP”

What can good generative models do?

« Then we can easily build a discriminative model via Bayes rule—
pQ(Xa y)

Po(y [ X) = (%)

Food101
guacamole (901%) Ranked 1out of 101 labels

v aphoto of guacamole, a type of food.
X a photo of ceviche, a type of food.

X a photo of edamame, a type of food.
X a photo of tuna tartare, a type of food.

X a photo of hummus, a type of food.




OpenAl “Dall-E 2”

What can good generative models do?

- We can also do class-conditional generation pg(X | y)

Input

An astronaut riding a horse in photorealistic style.

Output




NVIDIA “Image Inpainting Al Playground”

What can good generative models do?

. We can also do inpainting pg(X; | Xiy s Xi_ 15 Xin s - - - X)

NN T2 AR TS,




OpenAl “ChatGPT”

What can good generative models do?

. We can also do text generation pg(¥,+11Y1s -+ V)

@ You

To study Al, where should | go? Please give a detailed answer.

ChatGPT

To study Al, there are several excellent institutions and universities around the world that offer
comprehensive programs and research opportunities. POSTECH is one of them, but there are
many others as well. The choice of where to study Al depends on various factors such as your

academic interests, location preferences, budget, and career goals.

Here are some top institutions known for their Al programs and research:



What can good generative models do?

. We can also perform data augmentation X, . 1, ..., X5, ~ Pp(X)

/ Generator \

A

Real image

‘

Class
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Fake image



Classic Autoregressive Models



Preliminaries

« Chain rule

pxy, - X)) = pxp)py [ x7)--p(X, | X5 -5 X, 1)
- Bayes rule
px,y)  p(ylx)px)
P  pO)

px|y) =

« Conditional independence

fx Ly]| zthenp(x|y,z) = plx|z)



Fully Observable Model

« Explicit Density Model

« Use chain rule to decompose the likelihood of an image X into
products of 1D distributions.

- Then maximize the likelihood of training data
n

p(X)|= H Xy | x5 eees Xiq)

=1
Probability of i-th pixel,
Likelihood of image x given all previous pixel values




Why use such re-expression?

&

. Suppose that we have a sample binary image x = (xy, ..., x,),

with 7 binary pixels.

. Suppose a distribution p(x) = p(x, ..., X,) that can sample an image.

» Q. How many possible states?

. A. 2" states.



Why use such re-expression?

9q.3&

» Q. How many parameters?

. A. Consider a Bernoulli distribution x ~ Bern(p). Then,
p(xla IR Xn) — p(X1)r(X2 ‘xl (X3 |X1, XZ)" p('xn ‘ Xla . . -»-Xn—l)

2 params
1 param 4 params 2=l params



Why use such re-expression?

9q|3&

- Q. How many parameters, under independence?

. A. Consider a Bernoulli distribution x ~ Bern(p). Then,

pxy, ..., x,) = p(x))px, )p(z)---p(x,)

1 param

But this is too restrictive to model useful distribution...

=)



PixelRNN

- Generate image pixels starting from a corner.

» Dependency on previous pixels modeled using an RNN (LSTM)
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PixelRNN

- Generate image pixels starting from a corner.
» Dependency on previous pixels modeled using an RNN (LSTM)

 Training. Maximize likelihood over all
tralning Images
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Why use such re-expression?

&

- Use conditional independence
. Markov 1st order assumption:  p(x;. | X, ..., X;) = p(X; 1| X))
« Q. Number of parameters?
p(xy, ..., %) = px)p;, | x)pxz | x) -+ p(x, [ X, 1)

. A. Total 2n — 1, which is an exponential reduction.



PixelCNN

- Again, generate pixels starting from corner.

» Dependency now modeled using CNN over context regions




Masked Convolutions

« Apply masks so that a pixel does not see “future” pixels

00 Q)
O O 0 0O0

OO @® O O masked convolution
DES

¢




PixelCNN

Again, generate pixels starting from corner.
Dependency now modeled using CNN over context regions
Faster training than PixelCNN

« Can parallelize convolutions since
context region values are known.

Generation must be done sequentially...




occluded completions original
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Figure 1. Image completions sampled from a PixeIRNN.



Special case: WaveNet

 Basically a 1D pixelCNN for speech / music generation.
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PixelRNN / PixelCNN

 Pros.

. Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric

« Good quality, in general.

e Cons.

» Sequential generation; too slow!



Autoencoders




Basic Autoencoder

Input X




Basic Autoencoder

Input X Representation f(X)




Basic Autoencoder

Input X Representation f(X) Output g(f(x))

- = | Decoder|™

g(+)




Basic Autoencoder

Input X Representation f(X) Output g(f(x))

- = | Decoder|™

g(+)

. Train with the reconstruction loss L(X, g(f(X)))

« The encoder/decoders are neural networks



Basic Autoencoder

Input X Representation f(X) Output g(f(x))

- = | Decoder|™

g(+)

. Problem. A trivial solution when f( - ) = g( - ) = Identity

 Solution. An “hourglass” structure / regularization



Basic Autoencoder

Output 2(z)

Random input z

= | Decoder|™

g(+)

» Hope. Could this work like a “generator”?

- Blind hope, with no mathematical grounding &



Encoder

Original Image Noisy Input

Denoising Autoencoder

Code

Decoder

Output

- Idea. Add noise to the input, and train to recover the clean image.

. Still very limited capability as a generative model



Variational Autoencoder — Rough Idea

 Train a decoder and a distribution such that
if we send in a distribution, we get a data-generating distribution.

/\ = | Decoder|™

Po(Z) Po(X) ~ Pyaa(X)




Variational Autoencoder — Rough Idea

/\ = | Decoder|™

Po(Z)
— [P@(Z | X)py(X) dX



Cheers

« Next up. VAE (continued), GANSs, Diffusion models



