## **17. Training your neural net - 2** EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

### Contents

- Part 1. Setting up training
  - Activation functions
  - Data pre-processing
  - Batch normalization
  - Weight initialization

### • Part 2. Training Dynamics

- Learning rate
- Regularization
- Babysitting the learning process
- Hyperparameter optimization



Learning Rate

### **Recall that...**

• SGD. Can be written as

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot$$

- Variants. Adam, Adagrad, RMSProp ... are all based on this. • Hyperparameters. There are two key HPs.
  - Learning rate η
  - Batch size **B**

# $-\eta \cdot \nabla_{\theta} \left( \sum_{i=1}^{B} \ell(y_i, f_{\theta}(\mathbf{x}_i)) \right)$

### **Common Practice**

• Question. How should we select  $\eta^*$ ,  $B^*$ ?

• **Practice.** Choose the largest possible B, then find the optimal  $\eta$ .

Memory constraints + generalization issues

### • High LR

- Faster loss drop 🤙
- Converge at high loss (2)
- Low LR
  - Slow loss drop (2)
  - Converge at low loss

• Q. How to enjoy both benefits?



epoch

### Decay. A typical solution is to use learning rate decay.





**Note.** Optimizers have different sensitivities to Ir decay (e.g., LR decay is less critical in Adam than SGD + Momentum)



### • Nowadays, it is quite common to use cosine/cyclic LR with warmup.



### LR schedule — more of an art

Smith et al., "Don't decay the learning rate, increase the batch size," ICLR 2018

• Increasing the batch size  $\approx$  Decreasing the learning rate



## Efficiency — the batch size



Shallue et al., "Measuring the effects of data parallelism of neural network training," JMLR 2019

- Using the larger batch speeds up the overall training procedure.
  - but the benefit **saturates**

**Note.** Interestingly, the optimal LR scales linearly with the batch size.

### Efficiency — the batch size



(g) Transformer on Common Crawl

(h) VGG-11 on ImageNet

(i) LSTM on LM1B











## What we did not cover

- Detailed discussions on how advanced optimization algorithms work.
  - Momentum. <u>https://distill.pub/2017/momentum/</u>
  - Adam. <u>https://optimization.cbe.cornell.edu/index.php?title=Adam</u>
  - Others. <a href="https://cs231n.github.io/neural-networks-3/">https://cs231n.github.io/neural-networks-3/</a>



Regularization

## **Beyond Training Error**

### Train Loss



Better optimization algorithms help reduce the training loss



But we actually care about the test performance—how to reduce the gap?



## **Core Philosophy**

Most regularization methods follow the principle of Occam's razor:



"Whenever possible, use simpler models"

## **Core Philosophy**

### Simplicity of the model?

- Many definitions—smaller norm weights sparse weights have smaller prediction confidence...
- How to force simplicity?
  - Add penalty to the loss.
  - Modify the architecture...

• **Note.** Also eases the optimization — recall the midterm!

### Case 1. L2 Regularization

• Simplicity. Whenever possible, use smaller  $\ell_2$  norm weights.

**Method.** Directly adding to the regularization term  $\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} (L(\theta) + \lambda \cdot \|\theta\|_2)$ In fact, this is equivalent to a simpler-to-implement form:  $\theta^{(t+1)} = (1 - \eta \lambda) \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta)$ 

(thus often called "weight decay")



## Case 2. Dropout

- Simplicity. Whenever possible, use smaller subnetwork.
- Method. During the training, randomly remove each neuron, w.p. p.
  - For the inference, rescale the weights back to 1/p.



(a) Standard Neural Net



(b) After applying dropout.

## Case 2. Dropout

- Note. This is actually being used for training models like ChatGPT.
  - e.g., "Stochastic depth" removes some layers





## **Babysitting the learning process**



## **Step 1. Preprocess the data**



Here, we assume that  $\mathbf{X} = \mathbb{R}^{n \times d}$ , so that the first axis is along the data indices

## **Step 2. Choose the architecture**

### CIFAR-10 images $32 \times 32 \times 3 = 3072$



## input layer

hidden layer

## **Step 3. Set up the loss**



```
loss, grad = two layer net(X train, model, y train, 0.0)
print loss
```

2.30261216167

loss—looks reasonable for an untrained model

 $\ln(1/10) \approx -2.302585$ 

def init two layer model(input size, hidden size, output size):

model['W1'] = 0.0001 \* np.random.randn(input size, hidden size) model['W2'] = 0.0001 \* np.random.randn(hidden size, output size)

model = init two layer model(32\*32\*3, 50, 10) # input size, hidden size, number of classes disabled regularization

## **Step 3. Set up the loss**



```
model = init two layer model(32*32*3, 50, 10)
loss, grad = two layer net(X train, model, y
print loss
```

3.06859716482

loss went up— sanity check passed.

def init two layer model(input size, hidden size, output size):

model['W1'] = 0.0001 \* np.random.randn(input size, hidden size) model['W2'] = 0.0001 \* np.random.randn(hidden size, output size)

| # inpu | nt size, hidden size, number of classes |  |  |  |  |  |  |  |
|--------|-----------------------------------------|--|--|--|--|--|--|--|
| train, | 1e3)                                    |  |  |  |  |  |  |  |
|        | cranked up reg                          |  |  |  |  |  |  |  |

### **Tip.** Make sure you can perfectly fit the very small portion of the training data

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
                                  model, two layer net,
                                  num epochs=200, reg=0.0,
                                  update='sgd', learning rate decay=1,
                                  sample batches = False,
                                  learning rate=le-3, verbose=True)
```

### Can we fit the first 20 samples from CIFAR-10, using SGD without regularization?

### **Step 4. Train**

### **Tip.** Make sure you can perfectly fit the very small portion of the training data

```
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
```

### **Step 4. Train**

model = init two layer model(32\*32\*3, 50, 10) # input size, hidden size, number of classes model, two layer net, num epochs=200, reg=0.0, update='sgd', learning rate decay=1, sample batches = False, learning rate=le-3, verbose=True) \* Finished anach 20 / 200, cost 1 205760 train. 0 650000 wal 0 650000 lr 1 0000000 02

### **Tip.** Make sure you can perfectly fit the very small portion of the training data

|                                  | - F                      |                     |     |                        |                        |                            | -  |
|----------------------------------|--------------------------|---------------------|-----|------------------------|------------------------|----------------------------|----|
| Finished                         | epoch                    | 195                 | 1   | 200:                   | cost                   | 0.00269                    | 4  |
| Finished                         | epoch                    | 196                 | 1   | 200:                   | cost                   | 0.00267                    | 4  |
| Finished                         | epoch                    | 197                 | 1   | 200:                   | cost                   | 0.00265                    | 5  |
| Finished                         | epoch                    | 198                 | 1   | 200:                   | cost                   | 0.00263                    | 5  |
| Finished                         | epoch                    | 199                 | 1   | 200:                   | cost                   | 0.00261                    | 7  |
| Finished                         | epoch                    | 200                 | 1   | 200:                   | cost                   | 0.00259                    | 7  |
| finished                         | optimi                   | izati               | ior | n. bes                 | st val                 | lidation                   | 1  |
| Finished<br>Finished<br>finished | epoch<br>epoch<br>optimi | 199<br>200<br>izati | //  | 200:<br>200:<br>1. bes | cost<br>cost<br>st val | 0.0026<br>0.0025<br>idatio | 19 |

### **Step 4. Train**

4, train: 1.000000, val 1.000000, lr 1.000000e-03 4, train: 1.000000, val 1.000000, lr 1.000000e-03 5, train: 1.000000, val 1.000000, lr 1.000000e-03 5, train: 1.000000, val 1.000000, lr 1.000000e-03 7, train: 1.000000, val 1.000000, lr 1.000000e-03 7, train: 1.000000, val 1.000000, lr 1.000000e-03 accuracy: 1.000000

training accuracy is small, so we can train indeed!

### Start with small regularization and find the learning rate that makes the loss go down.

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
```

### **Step 4. Train**

model, two layer net, num epochs=10, reg=0.000001, update='sgd', learning rate decay=1, sample batches = True, learning rate=le-6, verbose=True)

### Start with small regularization and find the learning rate that makes the loss go down.

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                 model, two layer net,
                                 num epochs=10, reg=0.000001,
                                 update='sgd', learning rate decay=1,
                                 sample batches = True,
                                 learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10: cost 2.302420, train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization. best validation accuracy: 0.192000
                           the loss stays similar... maybe LR too low
```

### **Step 4. Train**



time

### If the LR is too high, you'll see NaNs... (or nondecreasing losses)

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sgd', learning rate decay=1,
                                  sample batches = True,
                                  learning rate=le6, verbose=True)
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log
 data loss = -np.sum(np.log(probs[range(N), y])) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract
  probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06
```

### **Step 4. Train**

## Hyperparameter Optimization

### Strategy

- The elementary strategy is the grid search
  - use coarse-to-fine grids, to reduce #trials
  - sometimes we use log-scales

• LR. 
$$10^{-2}, 10^{-3}, 10^{-4}$$

Hyperparameter 2



Hyperparameter 1

### Strategy

- Also quite common to use the random search
  - Larger "effective sample size." Grid Layout



Important parameter



# Random Layout parameter Unimportant

Important parameter

## More sophisticated...

- In some cases, we use Bayesian HP optimization techniques...
  - Predicting the performance, with Gaussian Processes



## More sophisticated...

• In some cases, we can use the hyperparameter transfer...



### Figure 2: Illustration of $\mu$ Transfer



### • <u>Next up.</u> Tasks that deep learning solves

