
17. Training your neural net - 2

2023 Fall, Jaeho Lee

EECE454 Introduction to 
Machine Learning Systems



Contents
• Part 1. Setting up training 

• Activation functions 

• Data pre-processing 

• Batch normalization 

• Weight initialization

• Part 2. Training Dynamics 

• Learning rate 

• Regularization 

• Babysitting the 
learning process 

• Hyperparameter 
optimization



Learning Rate



Recall that…
• SGD. Can be written as 

 

• Variants. Adam, Adagrad, RMSProp … are all based on this. 

• Hyperparameters. There are two key HPs. 

• Learning rate  

• Batch size 

θ(t+1) = θ(t) − η ⋅ ∇θ(
B

∑
i=1

ℓ(yi, fθ(xi)))

η

B



Common Practice

• Question. How should we select ? 

• Practice. Choose the largest possible , then find the optimal .

η*, B*

B η

Memory constraints
+ generalization issues



Typical case
• High LR 

• Faster loss drop 👍 

• Converge at high loss 😢 

• Low LR 

• Slow loss drop 😢 

• Converge at low loss 👍 

• Q. How to enjoy both benefits?



LR decay
• Decay. A typical solution is to use learning rate decay.

Note. Optimizers have different 
sensitivities to lr decay 
(e.g., LR decay is less critical in 
Adam than SGD + Momentum)



LR schedule — more of an art
• Nowadays, it is quite common to use cosine/cyclic LR with warmup.



Efficiency — the batch size

• Increasing the batch size  Decreasing the learning rate≈

Smith et al., “Don’t decay the learning rate, increase the batch size,” ICLR 2018



Efficiency — the batch size
• Using the larger batch speeds up 

the overall training procedure. 

• but the benefit saturates 

Note. Interestingly, the optimal LR scales linearly 
           with the batch size. 

Shallue et al., “Measuring the effects of data parallelism of neural network training,” JMLR 2019



What we did not cover
• Detailed discussions on how advanced optimization algorithms work. 

• Momentum. https://distill.pub/2017/momentum/ 

• Adam. https://optimization.cbe.cornell.edu/index.php?title=Adam 

• Others. https://cs231n.github.io/neural-networks-3/

https://distill.pub/2017/momentum/
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://cs231n.github.io/neural-networks-3/


Regularization



Beyond Training Error

Better optimization algorithms 
help reduce the training loss

But we actually care about the 
test performance—how to reduce the gap?



Core Philosophy
• Most regularization methods follow the principle of Occam’s razor: 

“Whenever possible, use simpler models”



Core Philosophy
• Simplicity of the model? 

• Many definitions—smaller norm weights 
                                 sparse weights 
                                 have smaller prediction confidence… 

• How to force simplicity? 

• Add penalty to the loss. 

• Modify the architecture… 

• Note. Also eases the optimization — recall the midterm!



Case 1. L2 Regularization

• Simplicity. Whenever possible, use smaller  norm weights. 

• Method. Directly adding to the regularization term 

 

                         In fact, this is equivalent to a simpler-to-implement form: 

 

(thus often called “weight decay”)

ℓ2

θ(t+1) = θ(t) − η ⋅ ∇θ(L(θ) + λ ⋅ ∥θ∥2)

θ(t+1) = (1 − ηλ)θ(t) − η ⋅ ∇θL(θ)



Case 2. Dropout
• Simplicity. Whenever possible, use smaller subnetwork. 

• Method. During the training, randomly remove each neuron, w.p. . 

• For the inference, rescale the weights back to .

p

1/p



Case 2. Dropout
• Note. This is actually being used for training 

models like ChatGPT. 

• e.g., “Stochastic depth” removes some layers



Babysitting the learning process



Step 1. Preprocess the data

Here, we assume that , so that the first axis is along the data indicesX = ℝn×d



Step 2. Choose the architecture

50 hidden neurons

10 output neurons; 
one per classCIFAR-10 images 

32 × 32 × 3 = 3072



Step 3. Set up the loss

disabled regularization

loss—looks reasonable for an untrained model 

ln(1/10) ≈ − 2.302585



Step 3. Set up the loss

cranked up reg

loss went up— sanity check passed.



Step 4. Train
Tip. Make sure you can perfectly fit the 
        very small portion of the training data

Can we fit the first 20 samples from CIFAR-10, 
using SGD without regularization?



Step 4. Train
Tip. Make sure you can perfectly fit the 
        very small portion of the training data



Step 4. Train
Tip. Make sure you can perfectly fit the 
        very small portion of the training data

training accuracy is small, so we can train indeed!



Step 4. Train
Start with small regularization and find the 
learning rate that makes the loss go down.



Step 4. Train
Start with small regularization and find the 
learning rate that makes the loss go down.

the loss stays similar… maybe LR too low



Step 4. Train

time

loss

shorter with better initialization

Note. Give your model some time



Step 4. Train
If the LR is too high, you’ll see NaNs… 
                    (or nondecreasing losses)



Hyperparameter Optimization



Strategy
• The elementary strategy is the grid search 

• use coarse-to-fine grids, to reduce #trials 

• sometimes we use log-scales 

• LR. 10−2,10−3,10−4



Strategy
• Also quite common to use the random search 

• Larger “effective sample size.”



More sophisticated…
• In some cases, we use Bayesian HP optimization techniques… 

• Predicting the performance, with Gaussian Processes



More sophisticated…
• In some cases, we can use the hyperparameter transfer…



Cheers

• Next up. Tasks that deep learning solves


