15. Backpropagation EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Optimizing Neural Networks

• Today. How to optimize the parameters of neural networks.

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\cdots$$

- $\sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1) \cdots + \mathbf{b}_{I-1}) + \mathbf{b}_I$ J • Here, the parameters are weights & biases:
 - $\boldsymbol{\theta} = \{ (\mathbf{W}_l, \mathbf{b}_l) \}_{l=1}^L$
- Again, the goal is to minimize the empirical risk:
 - $L(\theta) = -$

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(\mathbf{x}_i))$$

Image source: Li et al., "Visualizing the Loss Landscape of Neural Nets," NeurIPS 2018

Problem

• The loss landscape $L(\theta)$ is too irregular!

Recap: Gradient Descent

Gradient Descent

- Fortunately, simply performing gradient descent works well.
- Idea. Iteratively update θ in a direction the loss decreases.

SGD

- Computing $\nabla_{\theta} L(\theta)$ is expensive!
 - Need to look at the whole dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

$$\nabla_{\theta} L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \left(\ell(y_i, f_{\theta}(\mathbf{x}_i)) \right)$$

• Requires computation of the per-sample gradient

$$\nabla_{\theta} \left(\ell(\mathbf{y}, f_{\theta}(\mathbf{x})) \right) =$$

derivative of loss function, evaluated at prediction $f_{\theta}(\mathbf{x})$

Recall the **chain rule**: $\frac{\partial}{\partial x}g(f(x)) = g'(f(x)) \cdot f'(x)$

$$\frac{\partial \ell(y,z)}{\partial z}(f_{\theta}(\mathbf{x}))$$

•
$$\nabla_{\theta} f_{\theta}(\mathbf{x})$$

Prediction gradient (heavy!)

SGD

- **Stochastic GD.** Reduces this cost by looking at small number of randomly drawn samples at each time step.
 - SGD (narrow). Single sample at a time.
 - Mini-Batch GD. A batch of samples.

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Gradient computation

- Goal. Compute $\nabla_{\theta} f_{\theta}(\mathbf{x})$ for some \mathbf{x}, θ but how?
 - The parameter θ is high-dimensional (billions-trillions)
 - The function $f_{\theta}(\mathbf{x})$ is very irregular (continuous but nonconvex)

Idea. The gradient is defined as a collection of derivatives: ullet

$$\nabla_{\theta} g(\theta) = \left[\frac{\partial}{\partial \theta_1} g(\theta), \dots, \frac{\partial}{\partial \theta_d} g(\theta) \right]$$

Each derivative can be numerically computed as

$$\frac{\partial}{\partial x}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon}.$$

W + h (first dim):
[0.34 + 0.0001,
-1.11, 0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,]
loss 1.25322

gradient dW:

current W:	W + h (second dim):
[0.34,	[0.34, -1.11 + 0.0001]
-1.11, 0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

current W:	W + h (third dim):
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1	[0.34, -1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1
-3.1, -1.5,	-5.1, -1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

- Pros.
 - Easy to implement.
- Cons.
 - Is only approximate
 - Cannot send $\epsilon \to 0$, due to finite precision.
 - Very slow
 - Requires at least d + 1 evaluations of $f_{\theta}(\mathbf{x})$ for $\theta \in \mathbb{R}^d$.

Method 2. Analytic Method

- Idea. Derive an analytic expression of the gradient.
 - For example, if

- we know that the gradient will be
 - $g'(x) = 5 \cdot \cos(5 \cdot \exp(x)) \cdot \exp(x)$

 $g(x) = \sin(5 \cdot \exp(x))$

(how? we'll see more soon)

Method 2. Analytic Method

- Pros.
 - Exact.
 - Fast.
- Cons.
 - Needs careful implementation for complicated functions.
 - (called gradient check)

Need to check the correctness, using the numerical method

Backpropagation

Chain rule

• Q. How to analytically derive $\nabla_{\theta} f_{\theta}(\mathbf{x})$ for complicated functions?

 $f_{\theta}(\mathbf{x}) = \mathbf{W}_{L}\sigma(\mathbf{W}_{L-1}\sigma(\cdots\sigma(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1})\cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$

Chain rule

• Q. How to analytically derive $\nabla_{\theta} f_{\theta}(\mathbf{x})$ for complicated functions?

- A. View this as a composition of elementary operations $f_{\theta}(\mathbf{X}) = f_{\mathbf{b}_{I}} \circ f_{\mathbf{V}}$
 - Derivatives of elementary operations can be hard-coded.
 - We can use chain rule to combine these.

 $f_{\theta}(\mathbf{x}) = \mathbf{W}_{L}\sigma(\mathbf{W}_{L-1}\sigma(\cdots\sigma(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1})\cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$

$$\mathbf{W}_L \circ f_{\sigma_L} \circ \cdots \circ f_{\mathbf{W}_1}(\mathbf{X})$$

- Consider a function
- g(x, y, z)
- - g(x, y, z) =
 - $g_1(a,b) = a+b$ • Addition:
 - Multiplication:
- $g_2(a,b) = a \cdot b.$

$$y = (x + y) \cdot z$$

• This can be viewed as a composition of two elementary operations:

$$= g_2(g_1(x, y), z)$$

• Each elementary operation has easy-to-write gradients:

	∂g_1	_ 1	∂g_1	<u> </u>
•	да	— I,	дb	— I
	∂g_2	= h	∂g_1	= a
•	да	- <i>U</i> ,	дb	<u> </u>

• Chain rule tells you that:

$$-(g_1(x,y),z) \cdot \frac{\partial g_1}{\partial a}(x,y)$$
$$= 1$$

• Chain rule tells you that:

$$-(g_1(x,y),z) \cdot \frac{\partial g_1}{\partial b}(x,y) = 1$$

• Chain rule tells you that:

$$\frac{\partial g}{\partial z}(x, y, z) =$$

 $=\frac{\partial g_2}{\partial b}(g_1(x,y),z)$ $= g_1(x, y)$

• Chain rule tells you that:

 $\frac{\partial g}{\partial z}(x, y, z) = \frac{\partial g_2}{\partial b}(g_1(x, y), z)$

 $= g_1(x, y)$

- **Observation.** Computing gradients requires intermediate values of the composite function.
 - Idea. We first compute all intermediate values, and then combine them to get gradients.

- Iteratively applies three steps:
 - (1) Forward Pass. Compute the function output,
 - From input to output.

storing all intermediate values on memory.

- Iteratively applies three steps:
 - (1) Forward Pass. Compute the function output,
 - From input to output.

storing all intermediate values on memory.

- Iteratively applies three steps:
 - (1) Forward Pass. Compute the function output,
 - From input to output.

storing all intermediate values on memory.

- Iteratively applies three steps:
 - - From output to input.

• (2) Backward Pass. Compute the gradient using stored values.

- Iteratively applies three steps:
 - - From output to input.

• (2) Backward Pass. Compute the gradient using stored values.

- Iteratively applies three steps:
 - - From output to input.

• (2) Backward Pass. Compute the gradient using stored values.

- Iteratively applies three steps:
 - (3) GD. Update the parameters.

$$x \leftarrow x - \eta \cdot 2, \qquad y \leftarrow$$

 $-y - \eta \cdot 2, \qquad z \leftarrow z - \eta \cdot 8$

Another example $1 + \exp(-(w_0x_0 + w_1x_1 + w_2))$ 4.00

Another example $1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))$ 4.00 $\frac{\partial \exp}{\partial a} = \exp(a)$ 1.00 -1.00 0.37 1.37 0.73 ′*-1 $+^{1}$ +(exp -0.53 1.00 -0.20 -0.53

Computation Graphs of NNs

• For simple neural networks, the computation graph will be like:

Computation Graphs of NNs

- For larger models the computation graph will be:
 - But still, they will be **DAG** (directed acyclic graphs)

Concluding Remarks

- Training neural networks require a lot of memory!
 - Rule of thumb. Additional memory $\approx 2 \cdot (\text{model size})$
 - Gradient checkpointing. Re-compute activations when needed.
- Gradients of some activations are cheaper to compute/store.
 - **ReLU.** has 0/1 gradient... very cheap to store and compute.
- If interested, ask "Automatic Differentiation" to GPT.
 - or this paper: <u>https://arxiv.org/abs/1502.05767</u>

• <u>Next up.</u> Strategies for Neural Network Training

