15. Backpropagation
 EECE454 Introduction to
 Machine Learning Systems

Optimizing Neural Networks

- Today. How to optimize the parameters of neural networks.

$$
f_{\theta}(\mathbf{x})=\mathbf{W}_{L} \sigma\left(\mathbf{W}_{L-1} \sigma\left(\cdots \sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \cdots+\mathbf{b}_{L-1}\right)+\mathbf{b}_{L}\right.
$$

- Here, the parameters are weights \& biases:

$$
\theta=\left\{\left(\mathbf{W}_{l}, \mathbf{b}_{l}\right)\right\}_{l=1}^{L}
$$

- Again, the goal is to minimize the empirical risk:

$$
L(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}\left(\mathbf{x}_{i}\right)\right)
$$

Image source: Li et al., "Visualizing the Loss Landscape of Neural Nets," NeurIPS 2018

Problem

- The loss landscape $L(\theta)$ is too irregular!

Recap: Gradient Descent

Gradient Descent

- Fortunately, simply performing gradient descent works well.
- Idea. Iteratively update θ in a direction the loss decreases.

SGD

- Computing $\nabla_{\theta} L(\theta)$ is expensive!
- Need to look at the whole dataset $D=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$

$$
\nabla_{\theta} L(\theta)=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}\left(\ell\left(y_{i}, f_{\theta}\left(\mathbf{x}_{i}\right)\right)\right)
$$

- Requires computation of the per-sample gradient

$$
\nabla_{\theta}\left(\ell\left(y, f_{\theta}(\mathbf{x})\right)\right)=\frac{\partial \ell(y, z)}{\partial z}\left(f_{\theta}(\mathbf{x})\right) \cdot \cdot \nabla_{\theta} f_{\theta}(\mathbf{x})
$$

derivative of loss function, evaluated at prediction $f_{\theta}(\mathbf{x}) \mid$ Prediction gradient (heavy!)

SGD

- Stochastic GD. Reduces this cost by looking at small number of randomly drawn samples at each time step.
- SGD (narrow). Single sample at a time.
- Mini-Batch GD. A batch of samples.

Computing $\nabla_{\theta} f_{\theta}(\mathbf{x})$

Gradient computation

- Goal. Compute $\nabla_{\theta} f_{\theta}(\mathbf{x})$ for some $\mathbf{x}, \theta \ldots .$. but how?
- The parameter θ is high-dimensional (billions~trillions)
- The function $f_{\theta}(\mathbf{x})$ is very irregular (continuous but nonconvex)

Method 1. Numerical Method

- Idea. The gradient is defined as a collection of derivatives:

$$
\nabla_{\theta} g(\theta)=\left[\frac{\partial}{\partial \theta_{1}} g(\theta), \ldots, \frac{\partial}{\partial \theta_{d}} g(\theta)\right]
$$

Each derivative can be numerically computed as

$$
\frac{\partial}{\partial x} g(x)=\lim _{\epsilon \rightarrow 0} \frac{g(x+\epsilon)-g(x)}{\epsilon}
$$

Method 1. Numerical Method

current W :	W +h (first dim):	gradie	ent dW:
[0.34,	[0.34 + 0.0001,		-
-1.11, 0.78,	$\begin{aligned} & -1.11, \\ & 0.78, \end{aligned}$		$\xrightarrow[(125322-125347) 0.0001=-2.5]{ }$
0.12,	0.12,		${ }^{d(x)}{ }^{\text {d }}$ (x+b) $f(x)$
0.55,	0.55,		$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
2.81,	2.81,		$\mathrm{dx}^{(x)}{ }_{h \rightarrow 0} \quad h$
-3.1,	-3.1,	?	
-1.5,	-1.5,	?	
0.33,...]	0.33,...]	?,...]	
loss 1.25347	loss 1.25322		

Method 1. Numerical Method

current W:	$\mathrm{W}+\mathrm{h}$ (second dim):	gradient dW :		
$[0.34$,	$[0.34$,		\quad	
:---				
-1.11,				

Method 1. Numerical Method

Method 1. Numerical Method

- Pros.
- Easy to implement.
- Cons.
- Is only approximate
- Cannot send $\epsilon \rightarrow 0$, due to finite precision.
- Very slow
- Requires at least $d+1$ evaluations of $f_{\theta}(\mathbf{x})$ for $\theta \in \mathbb{R}^{d}$.

Method 2. Analytic Method

- Idea. Derive an analytic expression of the gradient.
- For example, if

$$
g(x)=\sin (5 \cdot \exp (x))
$$

we know that the gradient will be

$$
g^{\prime}(x)=5 \cdot \cos (5 \cdot \exp (x)) \cdot \exp (x)
$$

(how? we'll see more soon)

Method 2. Analytic Method

- Pros.
- Exact.
- Fast.
- Cons.
- Needs careful implementation for complicated functions.
- Need to check the correctness, using the numerical method (called gradient check)

Backpropagation

Chain rule

- Q. How to analytically derive $\nabla_{\theta} f_{\theta}(\mathbf{x})$ for complicated functions?

$$
f_{\theta}(\mathbf{x})=\mathbf{W}_{L} \sigma\left(\mathbf{W}_{L-1} \sigma\left(\cdots \sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \cdots+\mathbf{b}_{L-1}\right)+\mathbf{b}_{L}\right.
$$

Chain rule

- Q. How to analytically derive $\nabla_{\theta} f_{\theta}(\mathbb{x})$ for complicated functions?

$$
f_{\theta}(\mathbf{x})=\mathbf{W}_{L} \sigma\left(\mathbf{W}_{L-1} \sigma\left(\cdots \sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \cdots+\mathbf{b}_{L-1}\right)+\mathbf{b}_{L}\right.
$$

- A. View this as a composition of elementary operations

$$
f_{\theta}(\mathbf{x})=f_{\mathbf{b}_{L}} \circ f_{\mathbf{W}_{L}} \circ f_{\sigma_{L}} \circ \cdots \circ f_{\mathbf{W}_{1}}(\mathbf{x})
$$

- Derivatives of elementary operations can be hard-coded.
- We can use chain rule to combine these.

Chain rule: Example

- Consider a function

$$
g(x, y, z)=(x+y) \cdot z
$$

- This can be viewed as a composition of two elementary operations:

$$
g(x, y, z)=g_{2}\left(g_{1}(x, y), z\right)
$$

- Addition:

$$
g_{1}(a, b)=a+b
$$

- Multiplication: $\quad g_{2}(a, b)=a \cdot b$.

Chain rule: Example

- Each elementary operation has easy-to-write gradients:
- $\frac{\partial g_{1}}{\partial a}=1, \frac{\partial g_{1}}{\partial b}=1$
- $\frac{\partial g_{2}}{\partial a}=b, \frac{\partial g_{1}}{\partial b}=a$

Chain rule: Example

- Chain rule tells you that:

$$
\frac{\partial g}{\partial x}(x, y, z)=\left|\begin{array}{l}
\frac{\partial g_{2}}{\partial a}\left(g_{1}(x, y), z\right) \\
=z
\end{array} \cdot\right| \begin{aligned}
& \frac{\partial g_{1}}{\partial a}(x, y) \\
& =1
\end{aligned}
$$

Chain rule: Example

- Chain rule tells you that:

$$
\frac{\partial g}{\partial y}(x, y, z)=\left|\begin{array}{l}
\frac{\partial g_{2}}{\partial a}\left(g_{1}(x, y), z\right) \\
=z
\end{array} \cdot\right| \begin{aligned}
& \frac{\partial g_{1}}{\partial b}(x, y) \\
& =1
\end{aligned}
$$

Chain rule: Example

- Chain rule tells you that:

$$
\frac{\partial g}{\partial z}(x, y, z)=\left\lvert\, \begin{aligned}
& \frac{\partial g_{2}}{\partial b}\left(g_{1}(x, y), z\right) \\
& =g_{1}(x, y)
\end{aligned}\right.
$$

Chain rule: Example

- Chain rule tells you that:

 requires intermediate values of the composite function.

Idea. We first compute all intermediate values, and then combine them to get gradients.

Neural Network Training

- Iteratively applies three steps:
- (1) Forward Pass. Compute the function output, storing all intermediate values on memory.
- From input to output.

Neural Network Training

- Iteratively applies three steps:
- (1) Forward Pass. Compute the function output, storing all intermediate values on memory.
- From input to output.

Neural Network Training

- Iteratively applies three steps:
- (1) Forward Pass. Compute the function output, storing all intermediate values on memory.
- From input to output.

Neural Network Training

- Iteratively applies three steps:
- (2) Backward Pass. Compute the gradient using stored values.
- From output to input.

Neural Network Training

- Iteratively applies three steps:
- (2) Backward Pass. Compute the gradient using stored values.
- From output to input.

Neural Network Training

- Iteratively applies three steps:
- (2) Backward Pass. Compute the gradient using stored values.
- From output to input.

$$
\begin{aligned}
& \frac{\partial g}{\partial x}=\frac{\partial g_{2}}{\partial g_{1}} \frac{\partial g_{1}}{\partial x} \frac{\times 5}{2 \cdot 1=2} \\
& \frac{3}{2 \cdot 1=2} \\
& \frac{g_{1} 8}{8}
\end{aligned}+\cdots ?
$$

Neural Network Training

- Iteratively applies three steps:
- (3) GD. Update the parameters.

$$
x \leftarrow x-\eta \cdot 2, \quad y \leftarrow y-\eta \cdot 2, \quad z \leftarrow z-\eta \cdot 8
$$

Another example

- Consider a function

Computation Graphs of NNs

- For simple neural networks, the computation graph will be like:

Computation Graphs of NNs

- For larger models the computation graph will be:
- But still, they will be DAG (directed acyclic graphs)

Concluding Remarks

- Training neural networks require a lot of memory!
- Rule of thumb. Additional memory ≈ 2 (model size)
- Gradient checkpointing. Re-compute activations when needed.
- Gradients of some activations are cheaper to compute/store.
- ReLU. has 0/1 gradient... very cheap to store and compute.
- If interested, ask "Automatic Differentiation" to GPT.
- or this paper: https://arxiv.org/abs/1502.05767

Cheers

- Next up. Strategies for Neural Network Training

