
13. Deep Learning

2023 Fall, Jaeho Lee

EECE454 Introduction to
Machine Learning Systems

Recap: Linear Models
• We have studied many linear models: perceptrons, SVM, …

• Easy to fit, but had limited expressive power.

• Cannot perfectly predict on training data

Recap: Feature maps
• A useful approach is to use the feature map.

• A good linear model may exist in higher-dimensional space.

• We used handcrafted features, usually…

Features (a.k.a. Representations)
• Mathematically put, we were solving:

• Problem. Crafting a nice for complicated data is quite difficult…

min
Φ(⋅)

min
linear f(⋅)

1
n

n

∑
i=1

ℓ(yi, f(Φ(xi)))

Φ(⋅)

Human trial-and-error…?
Automated optimization, with data

Features (a.k.a. Representations)
• Consider a cat detector.

• We may use some domain knowledge to build good features.

Image source: CS231n @ Stanford

”round head”ϕ1(x) =

”two triangular ears”ϕ2(x) =

”two round eyes”ϕ3(x) =

”oval tail”ϕ4(x) =

…ϕ5(x) =

Features (a.k.a. Representations)
• Consider a cat detector.

• We may use some domain knowledge to build good features.

Image source: CS231n @ Stanford

”round head” Oϕ1(x) =

”two triangular ears” Xϕ2(x) =

”two round eyes” Xϕ3(x) =

”oval tail” Xϕ4(x) =

…ϕ5(x) =

Features (a.k.a. Representations)
• Consider a cat detector.

• We may not use domain knowledge to build good features.

Image source: CS231n @ Stanford

Representation Learning

• Representation learning learns from data.

• jointly optimized with (typically when there’s many labeled data)

• separately obtained from unlabeled data

• both

min
Φ(⋅)

min
linear f(⋅)

1
n

n

∑
i=1

ℓ(yi, f(Φ(xi)))

Φ(⋅)

f

Automated optimization, with data

Deep Learning

• Q1. How do we parameterize ? (i.e., hypothesis space for)

• Desired. Rich enough, so that it can express complicated functions

• Deep neural networks

• Q2. How do we optimize such ?

• Gradient descent, using backpropagation

Φ(⋅) Φ

Φ(⋅)

(Deep) Neural Networks

Neural Network
• Inspired by how human processes info.

(now very far from the human biological details)

Neural Network
• Idea. Human processes information using multiple layers of neurons.

• Each individual neuron performs a simple operation.

• Neurons sequentially build more complicated information.

“car”

Multi-Layer Perceptrons (MLPs)
• Recall that perceptrons use the classifier of form

• This is a combination of two functions:

• A linear operation

• A nonlinearity (or activation function)

fθ(x) = 1[θ⊤x > 0]

x ↦ θ⊤x

x ↦ 1[x > 0]

Multi-Layer Perceptrons (MLPs)
• Multi-layer perceptrons are a cascade of multiple parallel perceptrons.

• In the -th layer, we do

• Linear operation

• Activation function (typically applied entrywise)

i

z ↦ Wiz + bi

z ↦ σi(z)

weights
biases

hidden layer activation; internal representation; …

Multi-Layer Perceptrons (MLPs)
• Multi-layer perceptrons are a cascade of multiple parallel perceptrons.

• In the -th layer, we do

• Linear operation

• Activation function (typically applied entrywise)

• Ignoring the bias terms , our predictor can be written as:

i

z ↦ Wiz + bi

z ↦ σi(z)

bi

f(x) = WLσL−1(WL−1σ(⋯σ(W1x)⋯)

Width and Depth
• Width is the number of neurons in each layer (typically the widest)

• Depth is the number of layers

• e.g., a 3-layer neural network with width 4
(alternatively, a width 4 network with two hidden layers)

Activation functions
• There are many, for good reasons…

• Two big categories: Saturating & Non-saturating

Activation functions
• Q. What happens without activation functions?

• Equivalent to a linear function!
(thus no merit)

f(x) = WLWL−1⋯W1x

= W̃x

https://www.youtube.com/watch?v=3JQ3hYko51Y

Why are deep neural networks cool?
• Theoretically, this can represent any continuous function!

(via so-called “universal approximation theorems”)

• Only requires one hidden layer, given sufficient width

• Easy to compute; mostly linear operations

• Admits parallel computation

• Very flexible in size, and very modular.

• Design new operations and combine

Universal Approximation Theorem (rough)

Theorem. Given any function and ,
 one can find a two-layer ReLU neural network such that

.

g(⋅) ϵ > 0
f(⋅)

sup
x∈[0,1]

|g(x) − f(x) | ≤ ϵ

Proof idea
A single ReLU neuron looks like this. x

w1 a1

Proof idea
Difference of two single neurons makes the
“hard sigmoid”

=

x
w1 a1

w2 −a2

Proof idea
Difference of two hard sigmoids makes a “bump”

=

x

Proof idea
Use bumps to approximate the target function x

Cheers

• Next up. Convolutional layers

