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Recap: Linear Models
• We have studied many linear models: perceptrons, SVM, … 

• Easy to fit, but had limited expressive power. 

• Cannot perfectly predict on training data



Recap: Feature maps
• A useful approach is to use the feature map. 

• A good linear model may exist in higher-dimensional space. 

• We used handcrafted features, usually…



Features (a.k.a. Representations)
• Mathematically put, we were solving: 

 

• Problem. Crafting a nice  for complicated data is quite difficult…

min
Φ(⋅)

min
linear f(⋅)

1
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n

∑
i=1

ℓ(yi, f(Φ(xi)))

Φ( ⋅ )

Human trial-and-error…?
Automated optimization, with data



Features (a.k.a. Representations)
• Consider a cat detector. 

• We may use some domain knowledge to build good features.

Image source: CS231n @ Stanford

”round head”ϕ1(x) =

”two triangular ears”ϕ2(x) =

”two round eyes”ϕ3(x) =

”oval tail”ϕ4(x) =

…ϕ5(x) =



Features (a.k.a. Representations)
• Consider a cat detector. 

• We may use some domain knowledge to build good features.
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Features (a.k.a. Representations)
• Consider a cat detector. 

• We may not use domain knowledge to build good features.

Image source: CS231n @ Stanford



Representation Learning

 

• Representation learning learns  from data. 

• jointly optimized with     (typically when there’s many labeled data) 

• separately obtained from unlabeled data 

• both
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Automated optimization, with data



Deep Learning

• Q1. How do we parameterize ?          (i.e., hypothesis space for ) 

• Desired. Rich enough, so that it can express complicated functions 

• Deep neural networks 

• Q2. How do we optimize such ? 

• Gradient descent, using backpropagation

Φ( ⋅ ) Φ

Φ( ⋅ )



(Deep) Neural Networks



Neural Network
• Inspired by how human processes info. 

(now very far from the human biological details)



Neural Network
• Idea. Human processes information using multiple layers of neurons. 

• Each individual neuron performs a simple operation. 

• Neurons sequentially build more complicated information.

“car”



Multi-Layer Perceptrons (MLPs)
• Recall that perceptrons use the classifier of form 

 

• This is a combination of two functions: 

• A linear operation 

 

• A nonlinearity (or activation function) 

fθ(x) = 1[θ⊤x > 0]

x ↦ θ⊤x

x ↦ 1[x > 0]



Multi-Layer Perceptrons (MLPs)
• Multi-layer perceptrons are a cascade of multiple parallel perceptrons. 

• In the -th layer, we do 

• Linear operation          

• Activation function                  (typically applied entrywise)

i

z ↦ Wiz + bi

z ↦ σi(z)

weights
biases

hidden layer activation; internal representation; …



Multi-Layer Perceptrons (MLPs)
• Multi-layer perceptrons are a cascade of multiple parallel perceptrons. 

• In the -th layer, we do 

• Linear operation          

• Activation function                  (typically applied entrywise) 

• Ignoring the bias terms , our predictor can be written as: 

i

z ↦ Wiz + bi

z ↦ σi(z)

bi

f(x) = WLσL−1(WL−1σ(⋯σ(W1x)⋯)



Width and Depth
• Width is the number of neurons in each layer (typically the widest) 

• Depth is the number of layers 

• e.g., a 3-layer neural network with width 4 
(alternatively, a width 4 network with two hidden layers)



Activation functions
• There are many, for good reasons… 

• Two big categories: Saturating & Non-saturating



Activation functions
• Q. What happens without activation functions? 

 

                              

• Equivalent to a linear function! 
(thus no merit)

f(x) = WLWL−1⋯W1x

= W̃x



https://www.youtube.com/watch?v=3JQ3hYko51Y


Why are deep neural networks cool?
• Theoretically, this can represent any continuous function! 

(via so-called “universal approximation theorems”) 

• Only requires one hidden layer, given sufficient width 

• Easy to compute; mostly linear operations 

• Admits parallel computation 

• Very flexible in size, and very modular. 

• Design new operations and combine



Universal Approximation Theorem (rough)

Theorem. Given any function  and , 
                   one can find a two-layer ReLU neural network  such that 

.

g( ⋅ ) ϵ > 0
f( ⋅ )

sup
x∈[0,1]

|g(x) − f(x) | ≤ ϵ



Proof idea
A single ReLU neuron looks like this. x

w1 a1



Proof idea
Difference of two single neurons makes the 
“hard sigmoid”

=

x
w1 a1

w2 −a2



Proof idea
Difference of two hard sigmoids makes a “bump”

=

x



Proof idea
Use bumps to approximate the target function x



Cheers

• Next up. Convolutional layers


