12. More on Dim. Reduction EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Recap: PCA as a variance maximization

• Derived as a solution of variance maximization. max Va U

PCA. Projecting the data to a plane spanned by principal components

eigenvectors for largest eigenvalues of the data covariance matrix

$$\operatorname{ar}\left(\{\pi_{U}(\mathbf{x}_{i})\}_{i=1}^{n}\right)$$

projection of \mathbf{x}_i on the affine subspace U

PCA as Distortion Minimization

Distortion Minimization

• Here's a perspective:

"If the projected point is close to the original point, maybe it did not lose too much of original information."

Distortion Minimization

- Suppose that we try to find an affine subspace
 - $\mathbf{U} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$
 - such that the mean of squared distortion of each datum is minimized:

- (distortion \approx reconstruction error)

Distortion Minimization

- Suppose that we try to find an affine subspace
 - $\mathbf{U} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$
 - such that the mean of squared distortion of each datum is minimized:
 - $\min_{\substack{U \ n}} \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} \pi_{U}(\mathbf{x}_{i})||^{2}$
- Using the definition of projection from last class, this is:

- $\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x}_i \mathbf{U}\mathbf{x}_i \mathbf{b}\|^2$ $= \frac{1}{n} \sum_{i=1}^{n} \left(||\mathbf{x}_{i}||^{2} + ||\mathbf{b}||^{2} - \mathbf{x}_{i}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} - 2\mathbf{b}^{\mathsf{T}} \mathbf{x}_{i} + 2\mathbf{b}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} \right)$ $= \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i||^2 + ||\mathbf{b}||^2 - \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i^{\mathsf{T}} \mathbf{U} \mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}} \mathbf{\bar{x}} + 2\mathbf{b}^{\mathsf{T}} \mathbf{U} \mathbf{\bar{x}}$
- That is, we are solving

n = 1U,b

$\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} + \min_{\mathbf{U},\mathbf{b}} \left(\|\mathbf{b}\|^{2} - \frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}^{\mathsf{T}}\mathbf{U}\mathbf{x}_{i} - 2\mathbf{b}^{\mathsf{T}}\bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\bar{\mathbf{x}} \right)$

Optimizing b

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i\|^2 + \min_{\mathbf{U},\mathbf{b}} \left(\|\mathbf{b}\|^2 - \frac{1}{n} \|\mathbf{x}_i\|^2 + \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i\|^2 + \frac{1}{n} \sum_{i=1}$$

• Minimizing with respect to **b**, we get:

• Plug in to get:

$$\left(\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} - \bar{\mathbf{x}}^{\mathsf{T}}\bar{\mathbf{x}}\right)$$
$$= \operatorname{Var}\left(\{\mathbf{x}_{i}\}_{i=1}^{n}\right)$$

$-\frac{1}{n}\sum \mathbf{x}_i^{\mathsf{T}}\mathbf{U}\mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}}\bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\bar{\mathbf{x}}\right)$

 $\mathbf{b} = \bar{\mathbf{x}} - \mathbf{U}\bar{\mathbf{x}}$

+ $\min_{\mathbf{U}} \left(\bar{\mathbf{x}}^{\mathsf{T}} \mathbf{U} \bar{\mathbf{x}} - \frac{1}{n} \sum_{n} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} \right)$ k $= -\sum_{j=1}^{T} \mathbf{u}_{j}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{j}$

The equivalence

Summing up, we have

$$\min_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \pi_{\mathbf{U}}(\mathbf{x}_{i})\|^{2} =$$

Difference. The bias b is well-characterized in this case.

$= \operatorname{Var}(\{\mathbf{x}_i\}) - \max_{\mathbf{U}} \left(\sum_{j=1}^k \mathbf{u}_j \mathbf{S} \mathbf{u}_j\right)$ exactly what we solved for variance maximization problem

PCA in a nutshell

PCA as the best linear compression

- We project the data to a k-dimensional affine subspace in \mathbb{R}^d .
 - A datum $\mathbf{x} \in \mathbb{R}^d$ is projected to a k-dimensional **code**

$$\mathbf{z} = (a_1, \ldots, a_k),$$

for some bases $\mathbf{e}_1, \ldots, \mathbf{e}_k$ of the subspace.

where
$$\mathbf{x} = \sum_{i=1}^{k} a_i \mathbf{e}_i$$

PCA as the best linear compression

• This linear encoding can be written as

$$z = U_{enc}x$$
, where U

- One can decode back the data using some linear matrix U_{dec} :

 $\hat{\mathbf{x}} = \mathbf{U}_{dec}\mathbf{z}$

PCA as the best linear compression

- PCA solves the reconstruction error minimization problem
 - min - U_{enc}, U_{dec} n
 - Our mathematical derivations say that it is optimal to:
 - **Encode**. Use the top-k principal components $\mathbf{e}_1, \ldots, \mathbf{e}_k \in \mathbb{R}^d$ of data covariance matrix to construct \mathbf{U}_{enc}
 - Decode. Use $U_{dec} = U_{enc}^{\dagger}$

$$\sum_{i=1}^{n} \|\hat{\mathbf{x}}_{i} - \mathbf{x}_{i}\|_{2}^{2}$$

Applications of PCA

Face Recognition

- An ancient example: Eigenface (1991).
 - We can identify important characteristics of faces.
 - \Rightarrow Can be used for rapid recognition, tracking, and reconstruction

Original Dataset

Eigenvectors

Image Compression

- Image Compression
 - Divide each image to 12x12 pixel patches.
 - Save only low-dimensional values

144-dimension (full)

60-dimension

Each patch is represented as

 $a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k$ Save for each patch = (a_1, \dots, a_k) Common codebook = $(\mathbf{u}_1, \cdots, \mathbf{u}_k)$

6-dimension

1-dimension

Image Compression

 The eigenvectors look similar to which are used in JPEG

Eigenvectors

• The eigenvectors look similar to discrete cosine transforms (DCTs),

Discrete Cosine Bases

Noise Filtering

• Noises often contribute small to principal components, and thus can be removed by PCA

Noisy Image

15-dimension

Limitations of PCA

Failure Modes of PCA

• Difficult to capture non-linear datasets

Failure Modes of PCA

PCA does not account for class labels

Failure Modes of PCA

- PCA does not account for class labels
 - If it could account for...

Advanced Methods

Kernel PCA

• Idea. Perform PCA for $\Phi(\mathbf{x})$, not \mathbf{x} (requires careful hyperparameter tuning & validation)

Spherical Data

No Kernel

Gaussian Kernel ($\sigma = 20$)

Isomap (2000)

- Embed each data to low-dimensional space so that
 - distance on the manifold = distance on the embedded space
- Idea. Build a graph of points by connecting each point to k-nearest neighbors \Rightarrow Measure pairwise distance as graph distance.

- Similar to Isomap, we preserve some distance.
 - **Difference.** Encode neighbor info. as a probability distribution.

$$p_i(j) = \frac{\exp(j)}{\sum_{k \neq i} \exp(j)}$$

dist $(p_i, p_j) \approx \text{dist}(\mathbf{z}_i, \mathbf{z}_j)$

t-SNE

$$-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma^2)$$

$$\mathbf{p}(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma^2)$$

Then, we find the low-dim embedding such that

ICLR 2017-2024 submissions (n=24,347)

Coloured by year 2024 2017

Dmitry Kobak, @hippopedoid

- An elaborate version of Isomap, but much faster!

2D t-SNE projection

UMAP

• Reference: <u>https://pair-code.github.io/understanding-umap/</u>

2D UMAP projection

Autoencoders

- In PCA, we used linear matrices for encoding & decoding:
- Autoencoders do the same thing, but with neural nets:
 - Train nonlinear encoder & decoder with SGD.

• <u>Next up.</u> Mid-term!

