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Recap: PCA as a variance maximization
• PCA. Projecting the data to a plane spanned by principal components 

• Derived as a solution of variance maximization. 
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PCA as Distortion Minimization



Distortion Minimization
• Here’s a perspective: 

“If the projected point is close to the original point, 
maybe it did not lose too much of original information.”
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Distortion Minimization
• Suppose that we try to find an affine subspace 

 

such that the mean of squared distortion of each datum is minimized: 

 

   (distortion  reconstruction error)
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Distortion Minimization
• Suppose that we try to find an affine subspace 

 

such that the mean of squared distortion of each datum is minimized: 

 

• Using the definition of projection from last class, this is: 

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}
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• That is, we are solving 
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Optimizing b

 

• Minimizing with respect to , we get: 

 

• Plug in to get: 
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The equivalence
• Summing up, we have  

 

• Difference. The bias  is well-characterized in this case.
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exactly what we solved for 
variance maximization problem





PCA in a nutshell



PCA as the best linear compression

• We project the data to a -dimensional affine subspace in . 

• A datum  is projected to a -dimensional code 

 

for some bases  of the subspace. 

k ℝd

x ∈ ℝd k
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• This linear encoding can be written as 

 

• One can decode back the data using some linear matrix : 

z = Uencx, where Uenc =
← e⊤

1 →
⋯

← e⊤
k →

∈ ℝk×d

Udec

x̂ = Udecz

PCA as the best linear compression

x z x̂Uenc Udec



• PCA solves the reconstruction error minimization problem 

 

• Our mathematical derivations say that it is optimal to: 

• Encode. Use the top-k principal components  of 

data covariance matrix to construct  

• Decode. Use 
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PCA as the best linear compression

x z x̂Uenc Udec



Applications of PCA



Face Recognition
• An ancient example: Eigenface (1991). 

• We can identify important characteristics of faces. 
 Can be used for rapid recognition, tracking, and reconstruction⇒

Original Dataset Eigenvectors



Image Compression
• Image Compression 

• Divide each image to 12x12 pixel patches. 

• Save only low-dimensional values

144-dimension 
(full)

60-dimension 6-dimension 1-dimension

a1u1 + ⋯ + akuk

(a1, ⋯, ak)Save for each patch =
Common codebook = (u1, ⋯, uk)

Each patch is represented as



Image Compression
• The eigenvectors look similar to discrete cosine transforms (DCTs), 

which are used in JPEG

Eigenvectors Discrete Cosine Bases



Noise Filtering
• Noises often contribute small to principal components, 

and thus can be removed by PCA

Noisy Image 15-dimension



Limitations of PCA



Failure Modes of PCA
• Difficult to capture non-linear datasets



Failure Modes of PCA
• PCA does not account for class labels



Failure Modes of PCA
• PCA does not account for class labels 

• If it could account for…



Advanced Methods



Kernel PCA

• Idea. Perform PCA for , not  
          (requires careful hyperparameter tuning & validation)

Φ(x) x

Spherical Data No Kernel Gaussian Kernel ( )σ = 20



Isomap (2000)
• Embed each data to low-dimensional space so that 

distance on the manifold  = distance on the embedded space 

• Idea. Build a graph of points by connecting each point to -nearest 
          neighbors    Measure pairwise distance as graph distance.

k
⇒



t-SNE
• Similar to Isomap, we preserve some distance. 

• Difference. Encode neighbor info. as a probability distribution. 

 

                               Then, we find the low-dim embedding such that 

pi( j) =
exp( −∥xi − xj∥2/2σ2)

∑k≠i exp( −∥xi − xk∥2/2σ2)

dist(pi, pj) ≈ dist(zi, zj)



MNIST embeddings of t-SNE 

(requires computing pairwise 
distances of 60,000 samples)





UMAP
• An elaborate version of Isomap, but much faster! 

• Reference: https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/


Autoencoders
• In PCA, we used linear matrices for encoding & decoding: 

• Autoencoders do the same thing, but with neural nets: 

• Train nonlinear encoder & decoder with SGD.

x z x̂Uenc Udec



Cheers

• Next up. Mid-term!


