12. More on Dim. Reduction EECE454 Introduction to
 Machine Learning Systems

Recap: PCA as a variance maximization

- PCA. Projecting the data to a plane spanned by principal components
eigenvectors for largest eigenvalues of the data covariance matrix
- Derived as a solution of variance maximization.

$$
\max _{\mathrm{U}} \operatorname{Var}\left(\left\{\left\{\begin{array}{l}
\left.\left.\|_{\mathrm{U}}\left(\mathbf{x}_{i}\right)\right\}_{i=1}^{n}\right) \\
\begin{array}{l}
\text { projection of } \mathbf{x}_{i} \text { on the } \\
\text { affine subspace } U
\end{array}
\end{array}\right.\right.\right.
$$

PCA as Distortion Minimization

Distortion Minimization

- Here's a perspective:
"If the projected point is close to the original point, maybe it did not lose too much of original information."

Distortion Minimization

- Suppose that we try to find an affine subspace

$$
\mathrm{U}=\left\{a_{1} \mathbf{u}_{1}+\cdots+a_{k} \mathbf{u}_{k}+\mathbf{b}: a_{i} \in \mathbb{R}\right\}
$$

such that the mean of squared distortion of each datum is minimized:

$$
\min _{\mathrm{U}} \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\pi_{\mathrm{U}}\left(\mathbf{x}_{i}\right)\right\|^{2}
$$

(distortion \approx reconstruction error)

Distortion Minimization

- Suppose that we try to find an affine subspace

$$
\cup=\left\{a_{1} \mathbf{u}_{1}+\cdots+a_{k} \mathbf{u}_{k}+\mathbf{b}: a_{i} \in \mathbb{R}\right\}
$$

such that the mean of squared distortion of each datum is minimized:

- Using the definition of projection from last class, this is:

$$
\min _{\mathbf{U}, \mathbf{b}} \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{U} \mathbf{x}_{i}-\mathbf{b}\right\|^{2}
$$

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{U} \mathbf{x}_{i}-\mathbf{b}\right\|^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\left\|\mathbf{x}_{i}\right\|^{2}+\|\mathbf{b}\|^{2}-\mathbf{x}_{i}^{\top} \mathbf{U} \mathbf{x}_{i}-2 \mathbf{b}^{\top} \mathbf{x}_{i}+2 \mathbf{b}^{\top} \mathbf{U} \mathbf{x}_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}+\|\mathbf{b}\|^{2}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{U} \mathbf{x}_{i}-2 \mathbf{b}^{\top} \overline{\mathbf{x}}+2 \mathbf{b}^{\top} \mathbf{U} \overline{\mathbf{x}}
\end{aligned}
$$

- That is, we are solving

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}+\min _{\mathbf{U}, \mathbf{b}}\left(\|\mathbf{b}\|^{2}-\frac{1}{n} \sum \mathbf{x}_{i}^{\top} \mathbf{U} \mathbf{x}_{i}-2 \mathbf{b}^{\top} \overline{\mathbf{x}}+2 \mathbf{b}^{\top} \mathbf{U} \overline{\mathbf{x}}\right)
$$

Optimizing b

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}+\min _{\mathbf{U}, \mathbf{b}}\left(\|\mathbf{b}\|^{2}-\frac{1}{n} \sum \mathbf{x}_{i}^{\top} \mathbf{U} \mathbf{x}_{i}-2 \mathbf{b}^{\top} \overline{\mathbf{x}}+2 \mathbf{b}^{\top} \mathbf{U} \overline{\mathbf{x}}\right)
$$

- Minimizing with respect to \mathbf{b}, we get:

$$
\mathbf{b}=\overline{\mathbf{x}}-\mathbf{U} \overline{\mathbf{x}}
$$

- Plug in to get:

$$
\left(\begin{array}{l}
\left.\frac{1}{n} \sum\left\|\mathbf{x}_{i}\right\|^{2}-\overline{\mathbf{x}}^{\top} \overline{\mathbf{x}}\right)+\min _{\mathbf{U}}\left(\overline{\mathbf{x}}^{\top} \mathbf{U} \overline{\mathbf{x}}-\frac{1}{n} \sum \mathbf{x}_{i}^{\top} \mathbf{U} \mathbf{x}_{i}\right) \\
=\operatorname{Var}\left(\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}\right) \\
=-\sum_{j=1}^{k} \mathbf{u}_{j}^{\top} \mathbf{S u}_{j}
\end{array}\right)
$$

The equivalence

- Summing up, we have

$$
\begin{array}{r}
\min _{\mathrm{U}} \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\pi_{\mathrm{U}}\left(\mathbf{x}_{i}\right)\right\|^{2}=\operatorname{Var}\left(\left\{\mathbf{x}_{i}\right\}\right)-\max _{\mathbf{U}}\left(\sum_{j=1}^{k} \mathbf{u}_{j} \mathbf{S} \mathbf{u}_{j}\right) \\
\text { exactly what we solved for } \\
\text { variance maximization problem }
\end{array}
$$

- Difference. The bias \mathbf{b} is well-characterized in this case.

PCA in a nutshell

PCA as the best linear compression

- We project the data to a k-dimensional affine subspace in \mathbb{R}^{d}.
- A datum $\mathbf{x} \in \mathbb{R}^{d}$ is projected to a k-dimensional code

$$
\mathbf{z}=\left(a_{1}, \ldots, a_{k}\right), \quad \text { where } \quad \mathbf{x}=\sum_{i=1}^{k} a_{i} \mathbf{e}_{i}
$$

for some bases $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ of the subspace.

PCA as the best linear compression

- This linear encoding can be written as

$$
\mathbf{z}=\mathbf{U}_{\mathrm{enc}} \mathbf{x}, \quad \text { where } \quad \mathbf{U}_{\mathrm{enc}}=\left[\begin{array}{ccc}
\leftarrow & \mathbf{e}_{1}^{\top} & \rightarrow \\
& \cdots & \\
\leftarrow & \mathbf{e}_{k}^{\top} & \rightarrow
\end{array}\right] \in \mathbb{R}^{k \times d}
$$

- One can decode back the data using some linear matrix $\mathbf{U}_{\text {dec }}$:

$$
\hat{\mathbf{x}}=\mathbf{U}_{\mathrm{dec}} \mathbf{z}
$$

PCA as the best linear compression

- PCA solves the reconstruction error minimization problem

$$
\min _{\mathbf{U}_{\mathrm{enc}}, \mathbf{U}_{\mathrm{dec}}} \frac{1}{n} \sum_{i=1}^{n}\left\|\hat{\mathbf{x}}_{i}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

- Our mathematical derivations say that it is optimal to:
- Encode. Use the top-k principal components $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k} \in \mathbb{R}^{d}$ of data covariance matrix to construct $\mathbf{U}_{\text {enc }}$
- Decode. Use $\mathbf{U}_{\mathrm{dec}}=\mathbf{U}_{\mathrm{enc}}^{\top}$

Applications of PCA

Face Recognition

- An ancient example: Eigenface (1991).
- We can identify important characteristics of faces.
\Rightarrow Can be used for rapid recognition, tracking, and reconstruction

Original Dataset

Eigenvectors

Image Compression

- Image Compression
- Divide each image to 12×12 pixel patches.
- Save only low-dimensional values

Each patch is represented as

$$
a_{1} \mathbf{u}_{1}+\cdots+a_{k} \mathbf{u}_{k}
$$

Save for each patch $=\left(a_{1}, \cdots, a_{k}\right)$
Common codebook $=\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right)$

144-dimension (full)

60-dimension

6-dimension

1-dimension

Image Compression

- The eigenvectors look similar to discrete cosine transforms (DCTs), which are used in JPEG

Eigenvectors

Discrete Cosine Bases

Noise Filtering

- Noises often contribute small to principal components, and thus can be removed by PCA

Noisy Image

15-dimension

Limitations of PCA

Failure Modes of PCA

- Difficult to capture non-linear datasets

Failure Modes of PCA

- PCA does not account for class labels

Failure Modes of PCA

- PCA does not account for class labels

- If it could account for...

Advanced Methods

Kernel PCA

- Idea. Perform PCA for $\Phi(\mathbf{x})$, not \mathbf{x}
(requires careful hyperparameter tuning \& validation)

Spherical Data
No Kernel
Gaussian Kernel ($\sigma=20$)

Isomap (2000)

- Embed each data to low-dimensional space so that distance on the manifold = distance on the embedded space
- Idea. Build a graph of points by connecting each point to k-nearest neighbors \Rightarrow Measure pairwise distance as graph distance.

t-SNE

- Similar to Isomap, we preserve some distance.
- Difference. Encode neighbor info. as a probability distribution.

$$
p_{i}(j)=\frac{\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|^{2 / 2} \sigma^{2}\right)}
$$

Then, we find the low-dim embedding such that

$$
\operatorname{dist}\left(p_{i}, p_{j}\right) \approx \operatorname{dist}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)
$$

MNIST embeddings of t-SNE
(requires computing pairwise distances of 60,000 samples)

ICLR 2017-2024 submissions ($\mathrm{n}=24,347$)

UMAP

- An elaborate version of Isomap, but much faster!
- Reference: https://pair-code.github.io/understanding-umap/

2D t-SNE projection
2D UMAP projection

Autoencoders

- In PCA, we used linear matrices for encoding \& decoding:
- Autoencoders do the same thing, but with neural nets:
- Train nonlinear encoder \& decoder with SGD.

Cheers

- Next up. Mid-term!

