11. Dimensionality Reduction EECE454 Introduction to Machine Learning Systems

Recap: Unsupervised Learning

- Discover useful structure of the data, using unlabeled data.
- K-means clustering
- Gaussian Mixture Models
- Dimensionality Reduction (this week)
- Autoencoders, GANs, Diffusion models, ...

Dealing with high-dimensional data

- Many datasets are extremely high-dimensional, in its raw form.
- Suppose that you are an ML engineer at Google. Then, you'd need to learn from these datasets:

YouTube Shorts

$1920 \times 1080 \times 3$ colors x $60 \mathrm{fps} \times 60$ seconds
$=22.4$ billion pixels (per video)

Gmail

1000s of words x sender info x receiver info x (images...)
= millions~billions real numbers (per mail)

Curse of Dimensionality

- Higher-dimensional data are nasty to do ML on.
- More computation.
- Higher chance of noise.
- Difficult to visualize (for human insight)
- Difficult to find meaningful patterns.

Dimensionality: Nominal vs. True

- But do we really need all dimensions?
- Example. Handwritten Digit Recognition (MNIST, 28x28 image)

... and not like this
- That is, we may not need to fully utilize $\mathbb{R}^{28 \times 28}=\mathbb{R}^{784}$.

Dimensionality: Nominal vs. True

Hypothesis

There is a low-dimensional subspace (or submanifold) in the high-d space where the real data lies on.

Important. Ignore small "noise" in each datum!

Dimensionality Reduction

Finding these high-d -> low-d mapping.
Note. No need for labels!

Principal Component Analysis

Principal Component Analysis

- Dimensionality reduction using a affine subspace of the original space
- Invented by Karl Pearson (1909)
- Many aliases, e.g., Karhunen-Loève Transform

Suppose that we are given a 2D dataset-here, we want to find a 1 D subspace and a mapping, s.t. mapped data has nice properties.

Suppose that we are given a 2D dataset-here, we want to find
a 1D subspace and a mapping, s.t. mapped data has nice properties.
simplify \Rightarrow only consider (orthogonal) projections to the subspace.

Suppose that we are given a 2D dataset-here, we want to find a 1D subspace, s.t. the projected data has nice properties.

The Spirit

- We want to preserve the information as much as possible.
- Question. Which projection contains more information?

- Answer. Left!
A. Projected points are more widely spread.
B. Original points (\bullet) are closer to their projections (\bullet)
(we will see that A and B are equivalent)

What PCA does, abstractly.

Suppose that we have the dataset $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$.
Goal. Find the k-dimensional subspace U of \mathbb{R}^{d} such that:

- The projections has the maximum variance:

$$
\max _{\mathrm{U}} \operatorname{Var}\left(\pi_{\mathrm{U}}\left(\mathrm{x}_{1}\right), \ldots, \pi_{\mathrm{U}}\left(\mathbf{x}_{n}\right)\right)
$$

- The distortion from projection is minimized:

$$
\min _{U} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\pi_{\mathrm{U}}\left(\mathbf{x}_{i}\right)\right\|_{2}^{2}
$$

PCA as a Variance Maximization

Formalism: Affine Subspace

- A k-dimensional affine subspace $U \subset \mathbb{R}^{d}$ can be characterized by its orthonormal bases $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in \mathbb{R}^{d}$ and an orthogonal bias $\mathbf{b} \in \mathbb{R}^{d}$ as

$$
\mathrm{U}=\left\{a_{1} \mathbf{u}_{1}+\cdots+a_{k} \mathbf{u}_{k}+\mathbf{b}: a_{i} \in \mathbb{R}\right\}
$$

Formalism: Projection

- A projection of a vector $\mathbf{x} \in \mathbb{R}^{d}$ to an affine subspace U is

$$
\pi_{\mathrm{U}}(\mathbf{x})=\sum_{i=1}^{k}\left(\mathbf{u}_{i}^{\top} \mathbf{x}\right) \cdot \mathbf{u}_{i}+\mathbf{b}
$$

Formalism: Projection

- This can be neatly written as a matrix form:

$$
\begin{aligned}
\pi_{\mathrm{U}}(\mathbf{x}) & =\sum_{i=1}^{k}\left(\mathbf{u}_{i}^{\top} \mathbf{x}\right) \cdot \mathbf{u}_{i}+\mathbf{b} \\
& =\left(\sum_{i=1}^{k} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}\right) \mathbf{x}+\mathbf{b} \\
& =: \underset{\uparrow}{\mathrm{U}} \mathbf{x}+\mathbf{b}
\end{aligned}
$$

a $d \times d$ matrix with the rank k

Formalism: Projection

- The projection matrix has some useful properties.
- $\mathbf{U}^{\top}=\mathbf{U}$
- $\mathbf{U}^{\top} \mathbf{U}=\mathbf{U}$
(check by yourself!)

Variance maximization as a quadratic opt.

- Now, let's start looking into the variance maximization.
- We want to maximize the variance of the projected points, i.e.,

$$
\operatorname{Var}\left(\mathbf{U x}_{1}+\mathbf{b}, \ldots, \mathbf{U} \mathbf{x}_{n}+\mathbf{b}\right)
$$

- Because a constant term does not affect variance, this is equal to

$$
\operatorname{Var}\left(\mathbf{U x}_{1}, \ldots, \mathbf{U x}_{n}\right)
$$

Variance maximization as a quadratic opt.

$$
\operatorname{Var}\left(\mathbf{U x}_{1}, \ldots, \mathbf{U x}_{n}\right)
$$

- The mean of the $\left\{\mathbf{U} \mathbf{x}_{i}\right\}$ is $\mathbf{U} \overline{\mathbf{x}}$, where $\overline{\mathbf{x}}$ is the mean of $\left\{\mathbf{x}_{i}\right\}$.
- Thus, the variance is equal to

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{U}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} \mathbf{U}^{\top} \mathbf{U}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} \mathbf{U}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)
\end{aligned}
$$

Variance maximization as a quadratic opt.

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} \mathbf{U}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)
$$

- By definition of \mathbf{U}, we can re-write the above as

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right) \\
&= \sum_{j=1}^{k} \mathbf{u}_{j}^{\top}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}\right) \mathbf{u}_{j} \\
& \text { =sample covariance matrix } \mathbf{S} \\
& \text { (positive-semidefinite) }
\end{aligned}
$$

Variance maximization as a quadratic opt.

- Thus, PCA is solving the quadratic optimization

$$
\max _{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}} \sum_{j=1}^{k} \mathbf{u}_{j}^{\top} \mathbf{S} \mathbf{u}_{j}
$$

subject to the constraints

$$
\mathbf{u}_{i}^{\top} \mathbf{u}_{j}=\left\{\begin{array}{lll}
1 & \cdots & i=j \\
0 & \cdots & i \neq j
\end{array}\right.
$$

Solving the quadratic optimization ($k=1$)

- Let us take a closer look at the problem.

$$
\max _{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}} \sum_{j=1}^{k} \mathbf{u}_{j}^{\top} \mathbf{S} \mathbf{u}_{j}, \quad \text { subject to } \quad \mathbf{u}_{i}^{\top} \mathbf{u}_{j}=\mathbf{1}\{i=j\}
$$

- Consider the simplest case where $k=1$, i.e.,

$$
\max \mathbf{u}^{\top} \mathbf{S u}, \quad \text { subject to } \quad\|\mathbf{u}\|_{2}=1
$$

- We see that the \mathbf{u} should be the eigenvector of \mathbf{S} corresponding to the largest eigenvalue (i.e., the principal component)

Why principal component?

(Version 1) Routine answer

To solve the constrained optimization

$$
\max \mathbf{u}^{\top} \mathbf{S} \mathbf{u}, \quad \text { subject to } \quad\|\mathbf{u}\|_{2}=\mathbf{u}^{\top} \mathbf{u}=1
$$

consider the Lagrangian relaxation

$$
\max _{\mathbf{u}} \mathbf{u}^{\top} \mathbf{S u}+\alpha\left(1-\mathbf{u}^{\top} \mathbf{u}\right)
$$

The critical point is at the point $\mathbf{S u}=\alpha \mathbf{u}$ holds (i.e., eigenvectors).
Choosing the principal coefficient maximizes the value of $\mathbf{u}^{\top} \mathbf{S u}$

Why principal component?

(Version 2) If you don't like Lagrangian... (difficult to extend to $\mathbf{k}=\mathbf{2}$)
Let $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right)$ be the unit-norm eigenvectors of \mathbf{S}, with eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ in the descending order.

Any choice of \mathbf{u} can be written as a mixture of eigenvectors

$$
\mathbf{u}=w_{1} \mathbf{e}_{1}+\cdots+w_{d} \mathbf{e}_{d}
$$

with the weights $w_{1}^{2}+\cdots+w_{d}^{2}=1$. (energy in each direction, with total budget 1)

Why principal component?

The system \mathbf{S} scales each eigenvectors, i.e.,

$$
\begin{aligned}
\mathbf{S u} & =\mathbf{S}\left(w_{1} \mathbf{e}_{1}+\cdots+w_{d} \mathbf{e}_{d}\right) \\
& =w_{1} \mathbf{S e}_{1}+\cdots+w_{d} \mathbf{S} \mathbf{e}_{d} \\
& =w_{1} \lambda_{1} \mathbf{e}_{1}+\cdots+w_{d} \lambda_{d} \mathbf{e}_{d}
\end{aligned}
$$

Thus, we have

$$
\mathbf{u}^{\top} \mathbf{S} \mathbf{u}=w_{1}^{2} \lambda_{1}+\cdots+w_{d}^{2} \lambda_{d} .
$$

Optimal choice. Assign all weights to w_{1}, i.e., $\mathbf{u}=\mathbf{e}_{1}$.

The Next Component

- Now, consider the case where $k=2$.

$$
\max _{\mathbf{u}_{1}, \mathbf{u}_{2}} \mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\mathbf{u}_{2}^{\top} \mathbf{S} \mathbf{u}_{2}, \quad \text { subject to }\left\|\mathbf{u}_{1}\right\|=\left\|\mathbf{u}_{2}\right\|=1, \mathbf{u}_{1}^{\top} \mathbf{u}_{2}=0
$$

- View this as a nested optimization problem

$$
\max _{\left\|\mathbf{u}_{1}\right\|=1}\left(\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\max _{\left\|\mathbf{u}_{2}\right\|=1, \mathbf{u}_{2} \perp \mathbf{u}_{1}}\left(\mathbf{u}_{2}^{\top} \mathbf{S} \mathbf{u}_{2}\right)\right) .
$$

- Then, take a look at the inner maximization problem.

$$
\max _{\left\|\mathbf{u}_{2}\right\|=1, \mathbf{u}_{2} \perp \mathbf{u}_{1}}\left(\mathbf{u}_{2}^{\top} \mathbf{S} \mathbf{u}_{2}\right)
$$

The Next Component

- The Lagrangian of the inner maximization becomes

$$
\mathbf{u}_{2}^{\top} \mathbf{S} \mathbf{u}_{2}+\alpha \cdot\left(1-\mathbf{u}_{2}^{\top} \mathbf{u}_{2}\right)-\beta \cdot\left(\mathbf{u}_{1}^{\top} \mathbf{u}_{2}\right)
$$

- The critical point condition is where:

$$
\mathbf{S} \mathbf{u}_{2}=\alpha \mathbf{u}_{2}+\frac{\beta}{2} \mathbf{u}_{1}
$$

- Multiplying \mathbf{u}_{1}^{\top} on both sides, we get

$$
\begin{array}{ll}
\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{2}=\alpha \mathbf{u}_{1} \mathbf{u}_{2}+\frac{\beta}{2} & \\
=\mathbf{0} \quad=\mathbf{0} & \ldots \text { and thus } \beta=0
\end{array}
$$

The Next Component

- Plugging in $\beta=0$, we get

$$
\mathbf{S u} \mathbf{u}_{2}=\alpha \mathbf{u}_{2}
$$

- Thus, we should also select \mathbf{u}_{2} as an eigenvector.
- Selecting $\mathbf{u}_{1}, \mathbf{u}_{2}$ as eigenvectors for top-2 eigenvalues is optimal.

PCA, with k principal components

- Similarly, we can select the affine subspace spanned by

$$
\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ are k principal components of the sample covariance matrix $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}$.

- This can be done by performing SVD on the data matrix

$$
\mathbf{X}=\left[\mathbf{x}_{1}-\overline{\mathbf{x}}|\cdots| \mathbf{x}_{n}-\overline{\mathbf{x}}\right]=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

and selecting the columns of \mathbf{U} for top- k singular values.

Cheers

- Next up. PCA as minimum reconstruction error, Kernel PCA, t-SNE, ...

