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Recap: Unsupervised Learning
• Discover useful structure of the data, using unlabeled data. 

• K-means clustering 

• Gaussian Mixture Models 

• Dimensionality Reduction (this week) 

• Autoencoders, GANs, Diffusion models, …



Dealing with high-dimensional data
• Many datasets are extremely high-dimensional, in its raw form. 

• Suppose that you are an ML engineer at Google. 
Then, you’d need to learn from these datasets:

YouTube Shorts 
1920 x 1080 x 3 colors x 60 fps x 60 seconds 
= 22.4 billion pixels (per video)

Gmail 
1000s of words x sender info x receiver info x (images…) 
= millions~billions real numbers (per mail)



Curse of Dimensionality
• Higher-dimensional data are nasty to do ML on. 

• More computation. 

• Higher chance of noise. 

• Difficult to visualize (for human insight) 

• Difficult to find meaningful patterns.



Dimensionality: Nominal vs. True
• But do we really need all dimensions? 

• Example. Handwritten Digit Recognition (MNIST, 28x28 image) 

• That is, we may not need to fully utilize .ℝ28×28 = ℝ784

only looks like this … and not like this



Dimensionality: Nominal vs. True
Hypothesis 
There is a low-dimensional subspace 
(or submanifold) in the high-d space 
where the real data lies on. 
Important. Ignore small “noise” in each datum! 

Dimensionality Reduction 
Finding these high-d -> low-d mapping. 
Note. No need for labels!



Principal Component Analysis



Principal Component Analysis
• Dimensionality reduction using a affine subspace of the original space 

• Invented by Karl Pearson (1909) 

• Many aliases, e.g., Karhunen-Loève Transform



Suppose that we are given a 2D dataset—here, we want to find 
a 1D subspace and a mapping, s.t. mapped data has nice properties.



Suppose that we are given a 2D dataset—here, we want to find 
a 1D subspace and a mapping, s.t. mapped data has nice properties. 
          simplify  only consider (orthogonal) projections to the subspace.⇒



Suppose that we are given a 2D dataset—here, we want to find 
a 1D subspace, s.t. the projected data has nice properties.



The Spirit
• We want to preserve the information as much as possible. 

• Question. Which projection contains more information?



• Answer. Left! 

A. Projected points are more widely spread. 

B. Original points (  ) are closer to their projections (  ) 

(we will see that A and B are equivalent)



Suppose that we have the dataset . 

Goal. Find the -dimensional subspace  of  such that: 

• The projections has the maximum variance: 

 

• The distortion from projection is minimized: 

x1, …, xn ∈ ℝd

k 𝖴 ℝd

max
𝖴

Var(π𝖴(𝗑1), …, π𝖴(xn))

min
𝖴

n

∑
i=1

∥xi − π𝖴(xi)∥2
2

What PCA does, abstractly.

𝖴

xi



PCA as a Variance Maximization



Formalism: Affine Subspace

• A -dimensional affine subspace  can be characterized by its 
orthonormal bases  and an orthogonal bias  as 

k 𝖴 ⊂ ℝd

u1, …, uk ∈ ℝd b ∈ ℝd

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

u1
u2

b



Formalism: Projection

• A projection of a vector  to an affine subspace  is x ∈ ℝd 𝖴

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

b
u

x

(u⊤x) ⋅ u

πU(x)



Formalism: Projection
• This can be neatly written as a matrix form: 

 

              

                              

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

= (
k

∑
i=1

uiu⊤
i ) x + b

=: Ux + b

a  matrix with the rank d × d k



Formalism: Projection
• The projection matrix has some useful properties. 

•  

•  

(check by yourself!)

U⊤ = U

U⊤U = U



Variance maximization as a quadratic opt.
• Now, let’s start looking into the variance maximization. 

• We want to maximize the variance of the projected points, i.e., 

 

• Because a constant term does not affect variance, this is equal to 

Var(Ux1 + b, …, Uxn + b)

Var(Ux1, …, Uxn)



Variance maximization as a quadratic opt.

 

• The mean of the  is , where  is the mean of . 

• Thus, the variance is equal to  

 

                            

Var(Ux1, …, Uxn)
{Uxi} Ux̄ x̄ {xi}

1
n

n

∑
i=1

∥U(xi − x̄)∥2
2 =

1
n

n

∑
i=1

(xi − x̄)⊤U⊤U(xi − x̄)

=
1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)



Variance maximization as a quadratic opt.

 

• By definition of , we can re-write the above as 

 

1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

U
1
n

n

∑
i=1

k

∑
j=1

(xi − x̄)⊤uju⊤
j (xi − x̄)

=
k

∑
j=1

u⊤
j ( 1

n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤) uj

= sample covariance matrix  
(positive-semidefinite)

S



Variance maximization as a quadratic opt.
• Thus, PCA is solving the quadratic optimization 

 

    subject to the constraints 

max
u1,…,uk

k

∑
j=1

u⊤
j Suj

u⊤
i uj = {1 ⋯ i = j

0 ⋯ i ≠ j
.



Solving the quadratic optimization (k=1)
• Let us take a closer look at the problem. 

 

• Consider the simplest case where , i.e., 

 

• We see that the  should be the eigenvector of  corresponding to the 
largest eigenvalue (i.e., the principal component)                 why?

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = 1{i = j}

k = 1

max
u

u⊤Su, subject to ∥u∥2 = 1

u S



Why principal component?
(Version 1) Routine answer 

To solve the constrained optimization 

, 

consider the Lagrangian relaxation 

. 

The critical point is at the point  holds (i.e., eigenvectors). 

Choosing the principal coefficient maximizes the value of 

max
u

u⊤Su, subject to ∥u∥2 = u⊤u = 1

max
u

u⊤Su + α(1 − u⊤u)

Su = αu

u⊤Su



Why principal component?
(Version 2) If you don’t like Lagrangian… (difficult to extend to k=2) 

Let  be the unit-norm eigenvectors of , 

with eigenvalues  in the descending order. 

Any choice of  can be written as a mixture of eigenvectors 

 

with the weights . (energy in each direction, with total budget 1)

(e1, …, ed) S
(λ1, …, λd)

u

u = w1e1 + ⋯ + wded

w2
1 + ⋯ + w2

d = 1



Why principal component?

The system  scales each eigenvectors, i.e., 

 

       

       

Thus, we have 

. 

Optimal choice. Assign all weights to , i.e., .

S

Su = S(w1e1 + ⋯ + wded)

= w1Se1 + ⋯ + wdSed

= w1λ1e1 + ⋯ + wdλded

u⊤Su = w2
1λ1 + ⋯ + w2

dλd

w1 u = e1



The Next Component

• Now, consider the case where . 

 

• View this as a nested optimization problem 

. 

• Then, take a look at the inner maximization problem. 

k = 2

max
u1,u2

u⊤
1 Su1 + u⊤

2 Su2, subject to ∥u1∥ = ∥u2∥ = 1, u⊤
1 u2 = 0

max
∥u1∥=1 (u⊤

1 Su1 + max
∥u2∥=1,u2⊥u1

(u⊤
2 Su2))

max
∥u2∥=1,u2⊥u1

(u⊤
2 Su2)



The Next Component
• The Lagrangian of the inner maximization becomes 

 

• The critical point condition is where: 

 

• Multiplying  on both sides, we get 

u⊤
2 Su2 + α ⋅ (1 − u⊤

2 u2) − β ⋅ (u⊤
1 u2)

Su2 = αu2 +
β
2

u1

u⊤
1

u⊤
1 Su2 = αu1u2 +

β
2

= 0 = 0 … and thus β = 0



The Next Component

• Plugging in , we get 

 

• Thus, we should also select  as an eigenvector. 

• Selecting ,  as eigenvectors for top-2 eigenvalues is optimal.

β = 0

Su2 = αu2

u2

u1 u2



PCA, with  principal componentsk
• Similarly, we can select the affine subspace spanned by 

, 

where  are  principal components of the sample covariance 

matrix . 

• This can be done by performing SVD on the data matrix 

 

     and selecting the columns of  for top-k singular values.

{e1, …, ek}

e1, …, ek k

S =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤

X = [x1 − x̄ | ⋯ | xn − x̄] = UΣV⊤

U



Cheers

• Next up. PCA as minimum reconstruction error, Kernel PCA, t-SNE, …


