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Kaggle

« A competition platform for ML

» People upload data & put bounty on it. You solve it
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Kaggle Survey 2021

Linear or Logistic Regression 80.3

Decision Trees or Random Forests

Gradient Boosting Machines
(xgboost, lightgbm, etc)

Convolutional Neural Networks

Bayesian Approaches

Dense Neural Networks (MLPs, etc)

Recurrent Neural Networks

Transformer Networks (BERT, gpt-3,
etc)

Generative Adversarial Networks

Evolutionary Approaches

Other

None




The Birth of Decision Trees



Motivation

« Some trace it back to Porphyry (2347—3057?), a Greek philosopher.
- Modern use. Survey data analysis by Morgan & Sonquist (1963)

« Some data demonstrated multicollinearity
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Motivation

« Some data demonstrated interaction between features
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Motivation

« Some data demonstrated both
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Idea

- We may need some sequential approach
(instead of blindly assuming “additive” interactions)
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Decision Tree



Overview

- What it is. Nested if-then-else statements
 Advantages.
 Relatively easy to interpret (when not too large)
 Fast execution (when not too large)
« Standard algorithm has nice properties.
e vs. nearest neighbors.

« Both are nonparametric, based on local reqularity



A binary tree which recursively partitions/refines the input space.

. Each tree node is associated with a splittingrule g : & — {0,1}.

. Each leaf node is associate with a label ¥.

« Prediction. Given X, recurse down the tree until a leaf is reached.
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g(Xx) = l[xi > 1}

why?



Example: Iris Classification

2 Y =1{1,2,3)

= ratio of sepal length/width
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(according to some prediction rule)

Example: Iris Classification
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Example: Iris Classification
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Example: Iris Classification
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Example: Iris Classification

(according to some stopping rule)
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Example: Iris Classification

(according to some prediction rule)
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Algorithm



Elements of decision tree algorithm.

« We need three rules:

» Prediction rule, Splitting rule, Stopping rule

until all leaf node is stopped:
visit a leaf node
if(stopping_rule(node) = True):

apply prediction rule
stop the node

else:

split the node, using the splitting rule



Prediction

» Usually very simple.
 Classification: Majority

- Regression: Average, median...
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Splitting

. Idea. Partition the data to minimize the uncertainty for each cell.

. Example. Binary classification; if a set S has p - | S| labeled +1.

« Classification error:
u(S) = min{p,l —p}
e GinilIndex:

u(S) = 2p(l —p)
« Entropy:

1
u(S) = plog—+ (1 — p)log
p
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Splitting

. If we split a set S into §; and §,, we want to minimize
[ S [-u(S)) + 18, ] - u(S,)

» Question. How to find such §; and §,?

- Depends on uncertainty measures

 For classification, try the boundaries of the same-class clusters




Splitting

» The iterative algorithm is a “greedy” way to minimize

|
() = — Z | S| - u(S)

n leat Se g

- Greedy algorithms can fail in many cases, e.g., XOR

until all leaf node is stopped:
visit a leaf node
if(stopping_rule(node) = True):

apply prediction rule
stop the node

else:

split the node, using the splitting rule




Stopping

« Many criteria: Stop when
 Splitting does not reduce the uncertainty. A
« Reaches pre-specified size.

- Every leaf is “pure”

 Very prone to overfitting

» Often resolved by “pruning” trees







Random Forest

« Split the data
(or split the features)
to make many trees.

» Aggregate predictions
by majority voting or
averaging

DECISION TREE-1 DECISION TREE-1 DECISION TREE-1

RESULT-1 RESULT-2 RESULT-N

. called “bagging”

L’ MAJORITY VOTING / AVERAGING <_|

FINAL RESULT



Boosting

- Sequentially make trees to diversify them.

- Upweight the wrong classifications / learn to fit the residual
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Cheers

« Next up. Dimensionality Reduction



