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Disclaimer
• Today, we do not review math-heavy parts. 

• However, super important!



Supervised Learning & 
Unsupervised Learning



Supervised Learning

• Learning from data of form                                 (i.e., input-label pairs) 

• Linear Regression 

• Naïve Bayes 

• Perceptrons 

• Logistic Regression 

• K-NN 

• Decision Trees 

• SVMs

{(xi, yi)}n
i=1



Unsupervised Learning

• Learning from data of form                                                      (i.e., no labels) 

• K-Means 

• Gaussian Mixture Models 

• Principal Component Analysis

{xi}n
i=1



Anatomy of ML algorithms
• Three core elements. 

• Hypothesis space  

• Optimization algorithm 

• Loss function (& regularizer?) 

• Given the dataset , 
we perform the empirical risk minimization: 

ℱ

𝒟 = {(xi, yi)}n
i=1

minf∈ℱ
1
n

n

∑
i=1

ℓ( f(xi), yi)



Linear Regression



Linear Regression

• If  and , we solve 

 

• Optimization 

• Critical point analysis 

• Requires some pseudoinverse 

• Gradient descent 

x ∈ ℝd y ∈ ℝ

min
w∈ℝd,b∈ℝ

1
n

n

∑
i=1

(yi − w⊤xi + b)2



Naïve Bayes



Naïve Bayes
• Given the data and “model” (likelihood & prior), maximizes the joint 

probability 

 

• Assuming conditional independence of data, this is equivalent to 

 

• Optimization. Critical point analysis

max
θ

pθ(x1:n, y1:n)

min
θ (

n

∑
i=1

log
1

pθ(xi |yi)
+ log

1
pθ(y1:n) )



Perceptrons



Perceptron

• If  and , we solve 

 

where 

 

• Optimization. Online learning 
                         (Stochastic gradient descent)

x ∈ ℝd y ∈ {0,1}

min
θ

1
n

n

∑
i=1

( fθ(x) − y) ⋅ θ⊤x̃

fθ(x) = 1{θ⊤x̃ > 0}



Logistic Regression



Logistic Regression
• We solve 

 

where 

 

 

• Optimization. Gradient Descent

min
θ

1
n

n

∑
i=1

(log( fθ(xi))−yi + log(1 − fθ(xi))yi−1)

fθ(x) = σ(θ⊤x̃)

σ(t) =
1

1 + exp(−t)



Nearest Neighbors



Nearest Neighbor

• Idea. For any test data , do the majority voting (or averaging) of 
           training samples with the smallest 

 

• First appearance of “nonparametric alg.” & “hyperparameters”

x
k

∥x − xi∥



Decision Trees



Decision Tree
• Idea. Partition the input space with axis-aligned boundaries, 

          so that some uncertainty in each cell is minimized. 

• Optimization. Greedy construction, with bagging / boosting

until all leaf node is stopped: 

visit a leaf node 

if(stopping_rule(node) = True): 

apply prediction rule 
stop the node 

else: 

split the node, using the splitting rule



SVMs



SVM
• Idea. Linear model, but maximize margin; solves 

 

• Optimization. The method of Lagrangian multipliers 

• Solve the quadratic problem with a solver. 

• Softer version, with hyperparameters 

• Kernel version

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1



K-means



K-Means
• Solves 

 

• Optimization. Alternating minimization 
                          (general version: EM)

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2



GMMs



GMM
• With Gaussian likelihood models, solves the maximum likelihood 

 

• Optimization. Expectation-Maximization (EM) algorithm.

max
π,μ,Σ

n

∏
i=1

K

∑
k=1

πk ⋅ 𝒩(xi |μk, Σk)



PCA



PCA
• Minimize the reconstruction error from projection: 

 

• Optimization. Greedy selection of basis 

• The method of Lagrangian multipliers + critical point analysis 

• Reduces to the SVD.

min
U,b

1
n

n

∑
i=1

∥xi − Uxi − b∥2


