Q&A Session **EECE454 Introduction to** Machine Learning Systems

2023 Fall, Jaeho Lee

Disclaimer

- Today, we do not review math-heavy parts.
 - However, super important!

Supervised Learning & Unsupervised Learning

Supervised Learning

- Learning from data of form $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$
 - Linear Regression
 - Naïve Bayes
 - Perceptrons
 - Logistic Regression
 - K-NN
 - **Decision Trees**
 - SVMs

(i.e., input-label pairs)

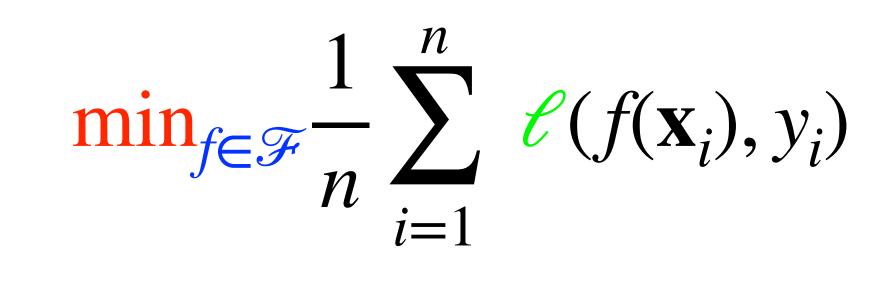
Unsupervised Learning

- Learning from data of form $\{\mathbf{X}_i\}_{i=1}^n$
 - K-Means
 - Gaussian Mixture Models
 - Principal Component Analysis

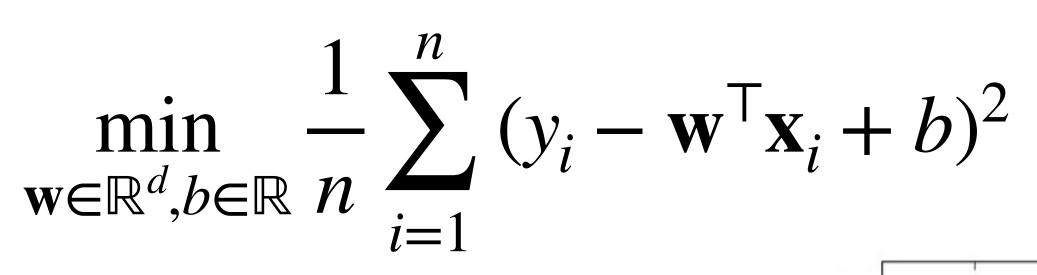
(i.e., no labels)

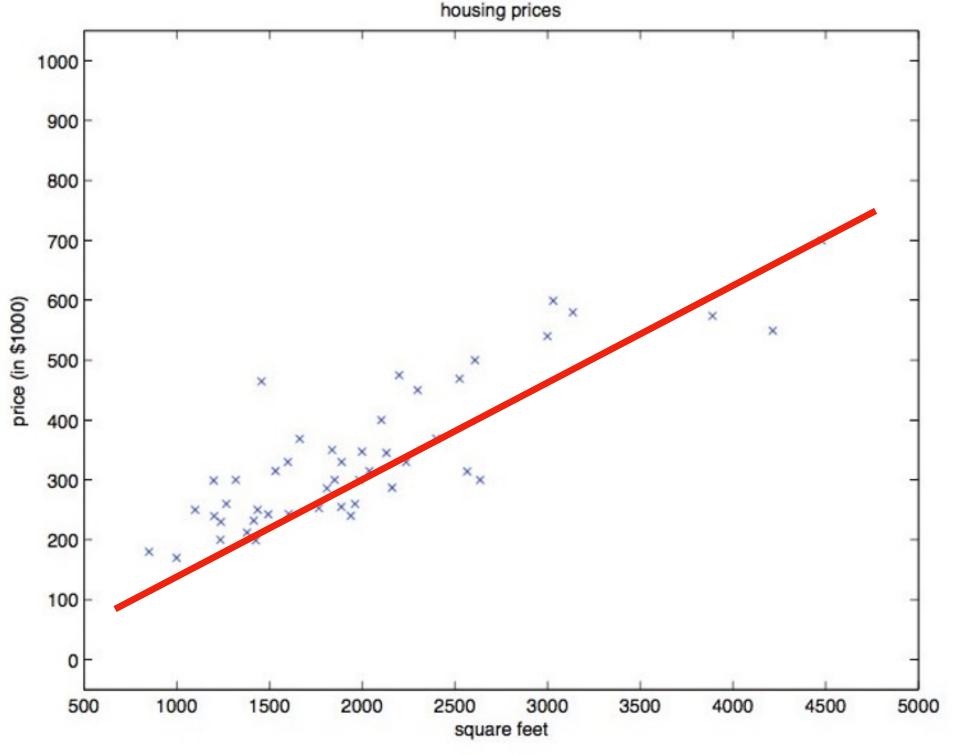
Anatomy of ML algorithms

- Three core elements.
 - Hypothesis space \mathcal{F}
 - Optimization algorithm
 - Loss function (& regularizer?)
- Given the dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, we perform the empirical risk minimization:



- If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$, we solve
- Optimization
 - Critical point analysis
 - Requires some pseudoinverse
 - Gradient descent





Naïve Bayes

probability

max p θ

• Assuming conditional independence of data, this is equivalent to

$$\min_{\theta} \left(\sum_{i=1}^{n} \log \frac{1}{p_{\theta}(\mathbf{x}_i \mid y_i)} + \log \frac{1}{p_{\theta}(y_{1:n})} \right)$$

Optimization. Critical point analysis \bullet

Given the data and "model" (likelihood & prior), maximizes the joint

$$\theta_{\theta}(\mathbf{x}_{1:n}, y_{1:n})$$

Perceptron

• If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \{0,1\}$, we solve $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} ($

where

• **Optimization.** Online learning (Stochastic gradient descent)

$$(f_{\theta}(\mathbf{x}) - y) \cdot \theta^{\mathsf{T}} \tilde{\mathbf{x}}$$

$f_{\theta}(\mathbf{x}) = \mathbf{1}\{\theta^{\mathsf{T}}\tilde{\mathbf{x}} > 0\}$

• We solve

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(\log(f_{\theta}(\mathbf{x}_{i})) \right)$$

 $f_{\theta}(\mathbf{x}) = \sigma(\theta^{\top} \tilde{\mathbf{x}})$ $\sigma(t) = \frac{1}{1 + \exp(-t)}$

• **Optimization.** Gradient Descent

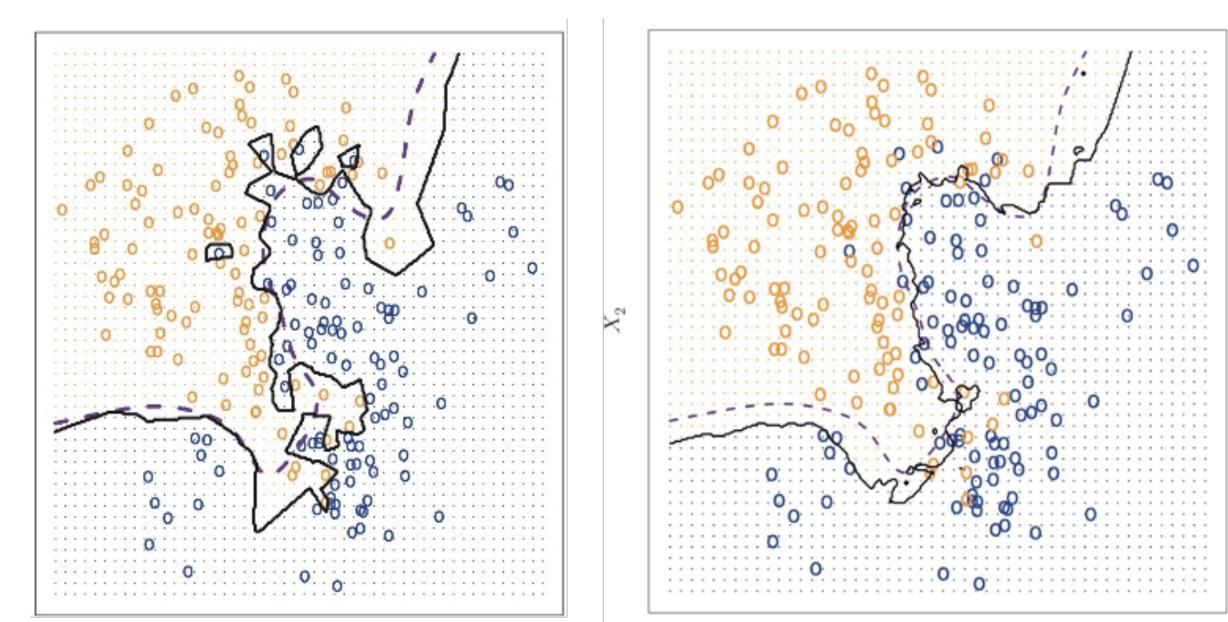
Logistic Regression

 $(x_i)^{-\mathbf{y}_i} + \log(1 - f_{\theta}(\mathbf{x}_i))^{\mathbf{y}_i - 1}$

Nearest Neighbors

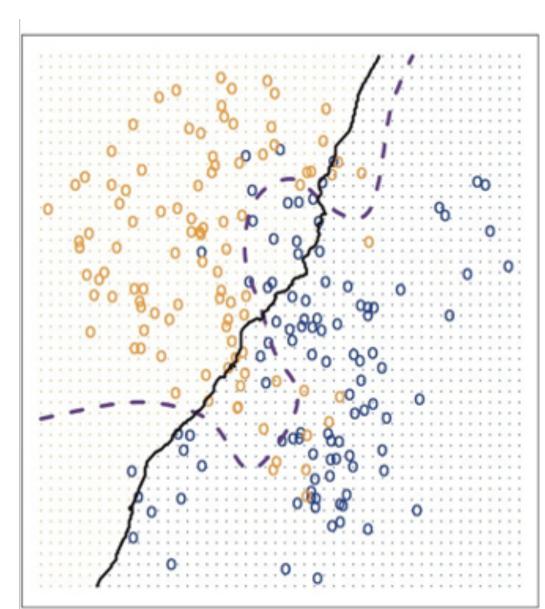
Nearest Neighbor

• Idea. For any test data **x**, do the majority voting (or averaging) of k training samples with the smallest



- $\|\mathbf{X} \mathbf{X}_i\|$

First appearance of "nonparametric alg." & "hyperparameters"



Decision Tree

- Idea. Partition the input space with axis-aligned boundaries, so that some uncertainty in each cell is minimized.
 - **Optimization.** Greedy construction, with bagging / boosting

until all leaf node is stopped:

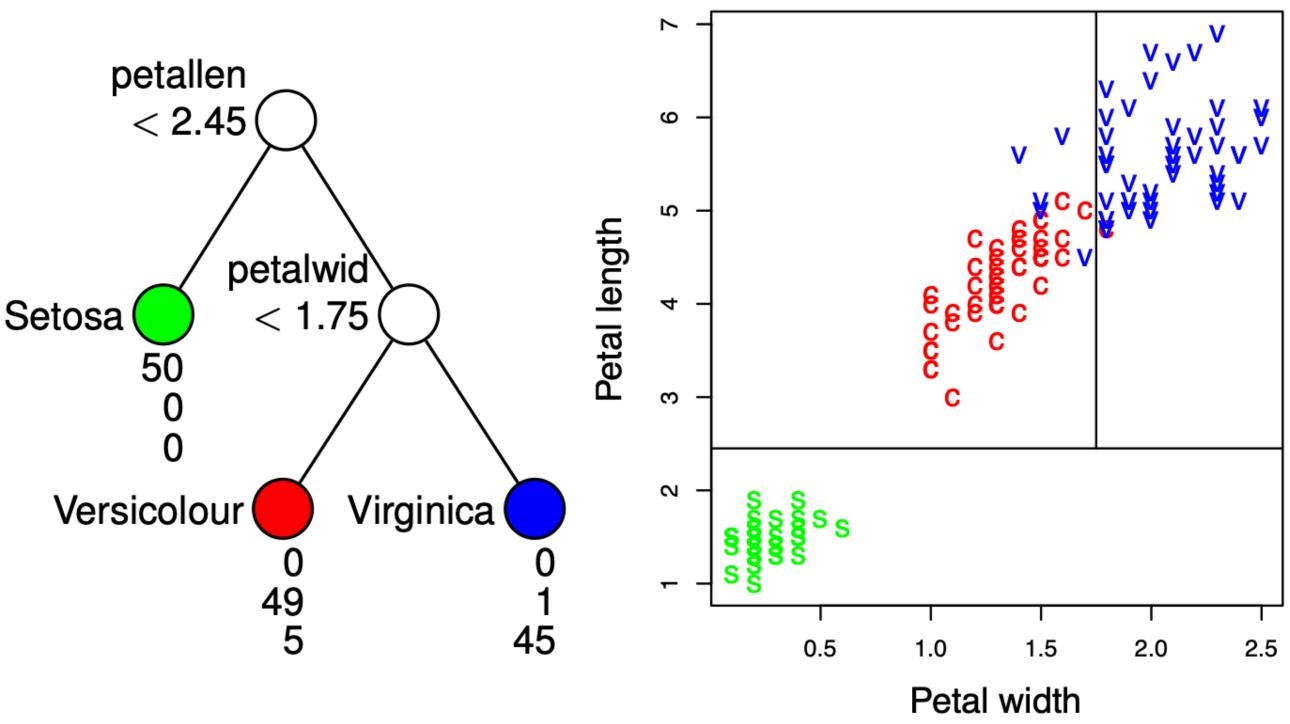
visit a leaf node

if(stopping_rule(node) = True):

apply prediction rule stop the node

else:

split the node, using the splitting rule



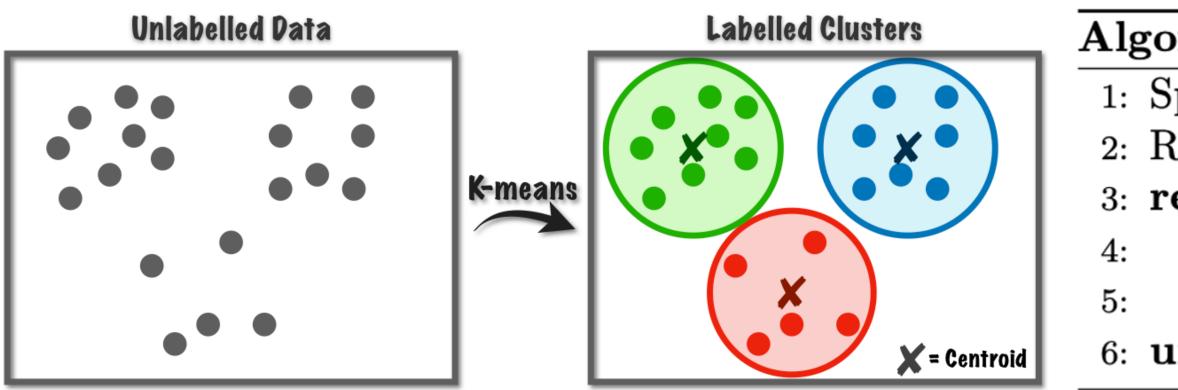
- Idea. Linear model, but maximize margin; solves $\mathscr{E}^* = \min_{\mathbf{w}, b} \frac{\|\mathbf{w}\|^2}{2} \quad \text{subject to} \quad y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1$
- **Optimization.** The method of Lagrangian multipliers Solve the quadratic problem with a solver.

- Softer version, with hyperparameters
- Kernel version

SVM

Solves

Optimization. Alternating minimization \bullet (general version: EM)



K-Means

$\min_{\{\mu_k\} \{r_{ik}\}} \sum_{i=1}^{k} ||\mathbf{x}_i - \mu_k||_2^2$

Algorithm 1 k-means algorithm

1: Specify the number k of clusters to assign.

2: Randomly initialize k centroids.

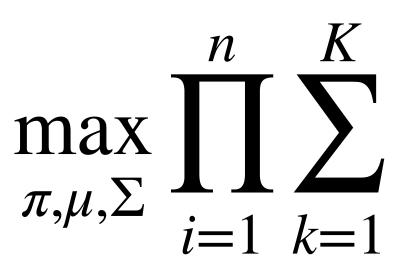
3: repeat

expectation: Assign each point to its closest centroid.

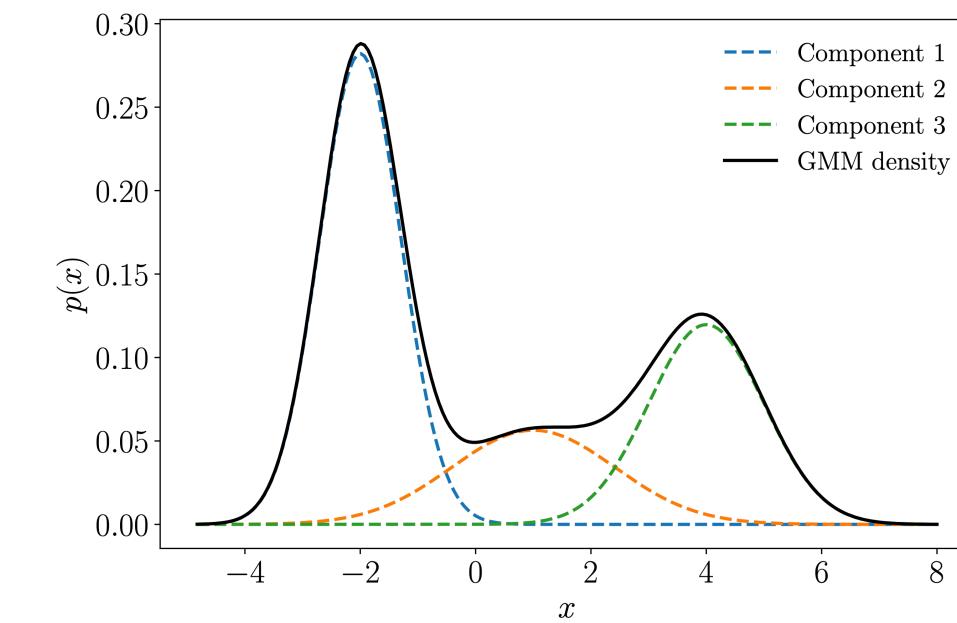
maximization: Compute the new centroid (mean) of each cluster. 6: **until** The centroid positions do not change.

GMM

With Gaussian likelihood models, solves the maximum likelihood



Optimization. Expectation-Maximization (EM) algorithm.



$$\pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$$

- 1. Initialize $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k$.
- 2. *E-step:* Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters $\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$:

$$r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (11.53)

3. *M-step:* Reestimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{nk} (from E-step):

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} \boldsymbol{x}_{n} , \qquad (11.54)$$

$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\top}, \qquad (11.55)$$

$$\pi_k = \frac{N_k}{N} \,. \tag{11.56}$$

PCA

Minimize the reconstruction error from projection:

 $\min_{\mathbf{U},\mathbf{b}} \frac{1}{n} \sum_{i=1}^{n} \|$

- Optimization. Greedy selection of basis
 - The method of Lagrangian multipliers + critical point analysis
 - Reduces to the SVD.

$$\|\mathbf{x}_i - \mathbf{U}\mathbf{x}_i - \mathbf{b}\|^2$$