Learning bounds for Risk-sensitive Learning
JaeHo Lee, Sejun Park, Jinwoo Shin Korea Advanced Institute of Science and Technology (KAIST)

TL;DR. We formulate risk-averse/seeking learning algorithms as an empirical OCE minimization, and give theoretical generalization guarantees.

Motivation. Robust/Fair ML algorithms

Robust/Fair ML algorithms discriminate samples, based on their losses.

Fact. ML algorithms can be viewed as "minimizing the weighted sum" of losses: Given the training data \(z_1, z_2, \ldots, z_n \), we find a parameter \(\theta \in \Theta \) (e.g. neural network weights) that achieve

\[
\min_{\theta \in \Theta} \sum_{i=1}^{n} w_i \cdot l(z_i; \theta)
\]

for some weights \(w_1, w_2, \ldots, w_n \).

The weights are typically:

- **Classical ML.** Every samples are treated equally important.
- **Robust ML.** High-loss samples are viewed as "outliers," and are disregarded or considered less important.
- **Fair ML.** Reducing the loss of high-loss samples is prioritized, to mitigate the sense of unfairness among individuals.

Background. OCE... what’s that?

Prop. 1. (Informal) As a special case, this modification incorporates algorithms that ignore high-loss samples.

Prop. 2. (Informal) Inverted OCE risks are more robust than the average loss, in terms of the influence function.

Result#1. Inverting OCE for Robust ML

We newly define inverted OCE to formally address robust ML algorithms

Inverse. We propose the "inverted OCE" to characterize the robust-ML-like algorithms which disregard high-loss samples.

\[
\text{OCE}(\theta) \triangleq \sup_{\lambda \in \mathbb{R}} \left\{ \lambda + E_P [\phi(l(Z; \theta) - \lambda)] \right\}
\]

Remark. In proving Thm. 2., we observe that OCE minimization is almost equivalent to the sample variance penalization procedure.

Batch-based sample variance penalization is often less noisier than the batch-based OCE minimization (using full-batch information).

Result#2. Performance guarantees

Rademacher complexity bounds for empirical OCE minimizers.

EOM. Similar to ERM (empirical risk minimization), we consider EOM procedure:

\[
\hat{\theta}_{\text{eom}} \triangleq \arg \min_{\theta \in \Theta} \text{OCE}(\theta, P_n)
\]

where \(P_n \) is the empirical distribution of the training dataset.

Thm. 1. (Informal) We have the excess OCE risk bound: with high probability,

\[
\text{OCE}(\hat{\theta}_{\text{eom}}, P) - \inf_{\theta \in \Theta} \text{OCE}(\theta, P) \leq \mathcal{O} \left(\frac{\text{Lip}(\phi) \cdot \text{comp}(\Theta)}{\sqrt{n}} \right)
\]

where \(\text{comp}(\Theta) \) denotes the Rademacher complexity of \(\Theta \).

Thm. 2. (Informal) We have the excess mean loss bound: with high probability,

\[
\mathbb{E}(\hat{\theta}_{\text{eom}}, P) - \inf_{\theta \in \Theta} \mathbb{E}(\theta, P) \leq \mathcal{O} \left(\frac{\text{comp}(\Theta)}{\sqrt{n}} \right) + \varepsilon
\]

where \(\varepsilon \) is a small term proportional to the loss standard deviation of the optimal hypothesis.

Result#3. Algorithmic implications

Sample variance penalization can be used for OCE minimization, provably.

Remark. In proving Thm. 2., we observe that OCE minimization is almost equivalent to the sample variance penalization procedure.

Batch-based sample variance penalization is often less noisier than the batch-based OCE minimization (using full-batch information).

Idea. Why don’t we use sample variance penalization as a baseline method for the empirical OCE minimization?

Result. The proposed baseline outperforms naïve batch CVaR minimization!